精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,在Rt△ABC中,已知∠B=90°,AB=6,BC=8,D,E,F分别是三边AB,BC,CA上的点,则DE+EF+FD的最小值为
 
分析:作F关于AB、BC的对称点F′、F″,作AC关于AB、BC的对称线段,可以发现F′,F″是一个菱形对边上的关于中心B对称的对称点.容易发现,F′F″的最短距离就是菱形对边的距离,也就是菱形的高.根据菱形的性质即可求出DE+EF+FD的最小值.
解答:精英家教网解:作F关于AB、BC的对称点F′、F″
则FD=F′D,FE=F″E.
DE+EF+FD=DE+F′D+F″E.
两点之间线段最短,可知当F固定时,DE+F′D+F″E的最小值就是线段F′F″的长.
于是问题转化:F运动时,F′F″什么时候最短.
F′,F″是关于B点对称的.
作AC关于AB、BC的对称线段,可以发现F′,F″是一个菱形对边上的关于中心B对称的对称点.
很容易发现,F′F″的最短距离就是菱形对边的距离,也就是菱形的高.
12×16=10x
x=
48
5
,高是
48
5

故DE+EF+FD的最小值为
48
5
点评:本题考查菱形的判定和性质及轴对称--最短路线问题的综合应用,有一定的难度.关键是确定F在斜边上的高的垂足点,D、E在B点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,则∠DCB=
55
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂线l分别交AB、AC及BC的延长线于点D、E、F,连接BE. 求证:EF=2DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C为圆心,R为半径所得的圆与斜边AB只有一个公共点,则R的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足为E,求证:四边形CFED是菱形.

查看答案和解析>>

同步练习册答案