精英家教网 > 初中数学 > 题目详情
精英家教网如图,在直角坐标平面内有点A(6,0),B(0,8),C(-4,0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.
(1)求证:MN:NP为定值;
(2)若△BNP与△MNA相似,求CM的长;
(3)若△BNP是等腰三角形,求CM的长.
分析:(1)过点N作NH⊥x轴于点H,然后分两种情况进行讨论,综合两种情况,求得MN:NP为定值
5
3

(2)当△BNP与△MNA相似时,当点M在CO上时,只可能是∠MNB=∠MNA=90°,所以△BNP∽△MNA∽△BOA,所以
AM
AN
=
AB
AO

所以
10-2k
5k
=
10
6
k=
30
31
,即CM=
60
31
;当点M在OA上时,只可能是∠NBP=∠NMA,所以∠PBA=∠PMO,根据题意可以判定不成立,所以CM=
60
31

(3)由于等腰三角形的特殊性质,应分三种情况进行讨论,即BP=BN,PB=PN,NB=NP三种情况进行讨论.
解答:证明:(1)过点N作NH⊥x轴于点H,
设AN=5k,得:AH=3k,CM=2k,
①当点M在CO上时,点N在线段AB上时:
∴OH=6-3k,OM=4-2k,
∴MH=10-5k,
∵PO∥NH,
MN
NP
=
MH
OH
=
10-5k
6-3k
=
5
3

②当点M在OA上时,点N在线段AB的延长线上时:
∴OH=3k-6,OM=2k-4,∴MH=5k-10,
∵PO∥NH,
MN
NP
=
MH
OH
=
5k-10
3k-6
=
5
3

解:(2)当△BNP与△MNA相似时:
①当点M在CO上时,只可能是∠MNB=∠MNA=90°,
∴△BNP∽△MNA∽△BOA,∴
AM
AN
=
AB
AO

10-2k
5k
=
10
6
k=
30
31
CM=
60
31

②当点M在OA上时,只可能是∠NBP=∠NMA,
∴∠PBA=∠PMO,
精英家教网

∠PBA=∠BNP+∠BPN
∠PMO=∠BNP+∠BAO
∠BAO>∠PBA>∠BPN

∴∠PBA≠∠PMO,矛盾∴不成立;

(3)∵
PO
NH
=
2
5
PO=
2
5
NH=
2
5
•4k
,∴PO=
8
5
k
BP=8-
8
5
k

①当点M在CO上时,BN=10-5k,
(ⅰ)BP=BN,8-
8
5
k=10-5k
k=
10
17
CM=
20
17

(ⅱ)PB=PN,则∠PNB=∠PBN,∵∠PNB>∠BAC>∠PBN,矛盾,∴不成立;
(ⅲ)NB=NP,则∠NBP=∠NPB
∵∠NPB=∠MNH,∠NBP=∠ANH,∴∠MNH=∠ANH
又∵NH⊥MA,可证△MNA为等腰三角形,
∴MH=AH,∴10-5k=3k,∴k=
5
4
CM=
5
2

②当点M在OA上时,BN=5k-10.
(ⅰ)BP=BN,8-
8
5
k=5k-10
k=
30
11
CM=
60
11

(ⅱ)PB=PN或NB=NP∵∠PBN>90°,∴不成立.
点评:本题主要是渗透分类思想,培养学生的严密性思维和解题方法:确定图形--分析图形--数形结合--解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常熟)的图象经过A(1,4),B(a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB
(Ⅰ)求函数y=
m
x
的解析式;
(Ⅱ)若△ABD的面积为4,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下列各题:
(1)解方程组
2x+y=2;         ①
3x-2y=10.      ②

(2)如图,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案