精英家教网 > 初中数学 > 题目详情
已知:关于x的一元二次方程-x2+(m+4)x-4m=0,其中0<m<4。
(1)求此方程的两个实数根(用含m的代数式表示)
(2)设抛物线y=-x2+(m+4)x-4m与x轴交于A、B两点(A在B的左侧),与y轴交于点C,若点D的坐标为(0,-2),且AD·BD=10,求抛物线的解析式;
(3)已知点E(a,y1)、F(2a,y2)、G(3a,y3)都在(2)中的抛物线上,是否存在含有y1、y2、y3,且与n无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由。
解:(1)将原方程整理,得x2-(m+4)x+4m=0,
∵(0<m<4),△=b2-4ac=[-(m+4)]2-4(4m)=m2-8m+16=(m-4)2>0
∴x=
∴x=m或x=4;
(2)由(1)知,抛物线y=-x2+(m+4)x-4m与x轴的交点分别为(m,0)、(4,0),
∵A在B的左侧,0<m<4,
∴A(m,0),B(4,0),则AD2=OA2+OD2=m2+22=m2+4
BD2=OB2+OD2=42+22=20
∵AD·BD=10
∴AD2·BD2=100
∴20(m2+4)=100,解得m=±1
∵0<m<4,
∴m=1,
∴m+4=5,-4m=-4,
∴抛物线的解析式为y=x2+5x-4;
(3)存在含有y1、y2、y3,且与a无关的等式,如:y3=3(y1-y2)-4(答案不唯一);
证明:由题意可得y1=-a2+5a-4,y2=-4a2+10a-4,y3=-9a2+15a-4,
∵左边=y3=-9a2+15a-4,
右边=-3(y1-y2)-4=-3[(-a2+5a-4)-(-4a2+10a-4)]-4=-9a2+15a-4,
∴左边=右边,∴y3=-3(y1-y2)-4成立。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求证:方程①有两个实数根;
(2)求证:方程①有一个实数根为1;
(3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2(m+1)x+m2=0有两个整数根,m<5且m为整数.
(1)求m的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2-2(m+1)x+m2的图象沿x轴向左平移4个单位长度,求平移后的二次函数图象的解析式;
(3)当直线y=x+b与(2)中的两条抛物线有且只有三个交点时,求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2x+c=0的一个实数根为3.
(1)求c的值;
(2)二次函数y=x2-2x+c,当-2<x≤2时,y的取值范围;
(3)二次函数y=x2-2x+c与x轴交于点A、B(A左B右),顶点为点C,问:是否存在这样的点P,以P为位似中心,将△ABC放大为原来的2倍后得到△DEF(即△EDF∽△ABC,相似比为2),使得点D、E恰好在二次函数上且DE∥AB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•延庆县二模)已知:关于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有实根,求m的取值范围;
(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;
(3)在(2)的前提下,二次函数y=mx2-(2m+2)x+m-1与x轴有两个交点,连接这两点间的线段,并以这条线段为直径在x轴的上方作半圆P,设直线l的解析式为y=x+b,若直线l与半圆P只有两个交点时,求出b的取值范围.

查看答案和解析>>

同步练习册答案