精英家教网 > 初中数学 > 题目详情
(2013•鄞州区模拟)对于二次函数C:y=
1
2
x2-4x+6和一次函数l:y=-x+6,把y=t(
1
2
x2-4x+6)+(1-t)(-x+6)称为这两个函数的“再生二次函数”,其中,t是不为零的实数,其图象记作抛物线E.设二次函数C和一次函数l的两个交点为A(x1,y1),B(x2,y2)(其中x1<x2).
(1)求点A,B的坐标,并判断这两个点是否在抛物线E上;
(2)二次函数y=-x2+5x+5是二次函数y=
1
2
x2-4x+6和一次函数y=-x+6的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;
(3)若抛物线E与坐标轴的三个交点围成的三角形面积为6,求抛物线E的解析式.
分析:(1)联立二次函数C与一次函数l的解析式,消掉y得到关于x的一元二次方程,解方程再求出相应的y的值,即可得到A、B的坐标,然后把点A、B的坐标代入抛物线E的解析式进行验证即可;
(2)根据抛物线E必过定点A、B,代入二次函数y=-x2+5x+5进行验证即可;
(3)设抛物线E截x轴的线段长为a,先利用三角形的面积求出a的长,再根据点B的坐标求出与x轴的另一交点的坐标,然后代入抛物线求解即可得到t的值,从而得解.
解答:解:(1)联立
y=
1
2
x
2
-4x+6
y=-x+6

消掉y得,
1
2
x2-4x+6=-x+6,
整理得,x2-6x=0,
解得x1=0,x2=6,
∴y1=6,y2=-6+6=0,
∴点A(0,6),B(6,0),
当x=0时,y=t(
1
2
×02-4×0+6)+(1-t)(-0+6)=6t+6-6t=6,
当x=6时,y=t(
1
2
×62-4×6+6)+(1-t)(-6+6)=0,
∴点A、B在抛物线E上;

(2)∵抛物线E一定经过点A、B,
而对于二次函数y=-x2+5x+5,当x=0时,y=5≠6,
∴二次函数y=-x2+5x+5不是二次函数y=
1
2
x2-4x+6和一次函数y=-x+6的一个“再生二次函数”;

(3)由(1)得,抛物线E与x轴的一个交点为B,与y轴的交点为A,
设抛物线E截x轴的线段长为a,则S=
1
2
a×6=6,
解得a=2,
所以,与x轴的另一个交点为(4,0)或(8,0),
点(4,0)代入抛物线E得,y=t(
1
2
×42-4×4+6)+(1-t)(-4+6)=0,
解得t=
1
2

此时y=
1
2
1
2
x2-4x+6)+(1-
1
2
)(-x+6)=
1
4
x2-
5
2
x+6,
点(8,0)代入抛物线E得,y=t(
1
2
×82-4×8+6)+(1-t)(-8+6)=0,
解得t=
1
4

此时,y=
1
4
1
2
x2-4x+6)+(1-
1
4
)(-x+6)=
1
8
x2-
7
4
x+6.
点评:本题考查了二次函数综合题型,主要利用了联立两函数解析式求交点坐标,验证点是否在二次函数图象上,三角形的面积,二次函数图象上点的坐标特征,读懂题目信息,理解“再生二次函数”的定义是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•鄞州区模拟)下列计算正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄞州区模拟)已知一元二次方程(x-3)2=1的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄞州区模拟)如图,正方形ABCD边长为2,AB∥x轴,AD∥y轴,顶点A恰好落在双曲线y=
1
2x
上,边CD、BC分别交双曲线于点E、F,若线段AE过原点,则△AEF的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄞州区模拟)如图,Rt△ABC和Rt△ECD中,∠ACB=∠ECD=90°,CA=CB,CE=CD,点D在AB上,若EC+AC=3
2
,则△EAD的周长为
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•鄞州区模拟)己知二次函数y=-x2+x+2图象与坐标轴交于三点A,B,C,则经过这三点的外接圆半径为
10
2
10
2

查看答案和解析>>

同步练习册答案