【题目】已知△ABC的三个顶点的坐标分别为,,.
(1)点A关于y轴对称的点的坐标是 ;
(2)将△ABC绕坐标原点O顺时针旋转180°,画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A,B,C为顶点的平行四边形的第四个顶点D的坐标.
【答案】(1)点A关于y轴对称的点坐标(2,3);(2)图详见解析,点B的对应点的坐标为(6,0);(3)D(-5,-3)或(-7,3)或(3,3).
【解析】
(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相同解答即可;
(2)根据网格结构找出点A、B、C绕点O旋转180°的对应点A′、B′、C′的位置,然后顺次连接即可;
(3)分以AB、BC、AC为对角线,分别写出即可.
解:(1)∵关于y轴对称的点的横坐标互为相反数,纵坐标相同,
∴点A关于y轴对称的点坐标(2,3);
(2)△ABC绕坐标原点O旋转180°的三角形如图所示,点B的对应点的坐标为(6,0);
(3)以AB为对角线时,第四个顶点D的坐标(-7,3),
以BC为对角线时,第四个顶点D的坐标(-5,-3),
以AC为对角线时,第四个顶点D的坐标(3,3),
∴D(-5,-3)或(-7,3)或(3,3).
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+mx+m﹣3=0.
(1)若该方程的一个根为2,求m的值及方程的另一个根;
(2)求证:不论m取何实数,该方程都有两个不相等的实数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,∠BAC=90°,AB=AC,点E是边AD上一点,且BE=BC,BE交AC于点F,过点C作BE的垂线,垂足为点O,与AD交于点G.
(1)若AB=,求AE的长;
(2)求证;BF=CO+EO.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F. 试说明:(1)△ABP≌△AEQ;(2)EF=BF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1)
(1)画出△ABC向下平移5个单位得到的△A1B1C1,并写出点B1的坐标;
(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,直接写出点C2的坐标和△A2B2C2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两地之间路程为4500米,甲、乙两人骑车都从A地出发,已如甲先出发6分钟后,乙才出发,乙在A、B之间的C地追赶上甲,当乙追赶上甲后,乙立即返A地,甲继续向B地前行.甲到达B地后停止骑行.乙骑行到A地时也停止(假定乙在C地掉头的时间忽略不计),在整个骑行过程中,甲和乙均保持各自的速度匀速骑行,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与B地相距的路程是______米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α等于( )
A. 20° B. 30° C. 40° D. 50°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P,Q两点同时出发,分别到达B,C两点后就停止移动.
(1)设运动开始后第t秒钟后,五边形APQCD的面积为Scm2,写出S与t 的函数关系式,并指出自变量t的取值范围.
(2)t为何值时,S最小?最小值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com