精英家教网 > 初中数学 > 题目详情
阅读下列材料:
为了求1+2+22+23+…+22011的值,可令S=1+2+22+23+…+22011①,
则 2S=2+22+23+…+22012②,
②-①得  2S-S=22012-1,即S=22012-1,
∴1+2+22+23+…+22011=22012-1
仿照以上推理,请计算:1+4+42+43…+42011
分析:把所求算式乘以4,然后相减并整理即可得解.
解答:解:设S=1+4+42+43…+42011①,
则4S=4+42+43…+42012②,
②-①得,3S=42012-1,
所以,S=
42012-1
3
点评:本题考查了有理数的乘方,读懂题目信息,理解这列数求和的计算方法是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读下列材料,再解答后面的问题.
材料:密码学是一门很神秘、很有趣的学问,在密码学中,直接可以看到的信息称为明码,加密后的信息称为密码,任何密码只要找到了明码与密码的对应关系--密钥,就可以破译它.
密码学与数学是有关系的.为此,八年一班数学兴趣小组经过研究实验,用所学的一次函数知识制作了一种密钥的编制程序.他们首先设计了一个“字母--明码对照表”:
字母 A B C D E F G H I J K L M
明码 1 2 3 4 5 6 7 8 9 10 11 12 13
字母 N O P Q R S T U V W X Y Z
明码 14 15 16 17 18 19 20 21 22 13 24 25 26
例如,以y=3x+13为密钥,将“自信”二字进行加密转换后得到下表:
汉字
拼音 Z I X I N
明码:x 26 9 24 9 14
密钥:y=精英家教网
密码:y 91 40      
因此,“自”字加密转换后的结果是“9140”.
问题:
(1)请你求出当密钥为y=3x+13时,“信”字经加密转换后的结果;
(2)为了提高密码的保密程度,需要频繁地更换密钥.若“自信”二字用新的密钥加密转换后得到下表:
汉字
拼音 Z I X I N
明码:x 26 9 24 9 14
密钥:y=精英家教网
密码:y 70 36      
请求出这个新的密钥,并直接写出“信”字用新的密钥加密转换后的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,然后解答后面的问题:
我们知道二元一次方程组
2x+3y=12
3x-3y=6
的求解方法是消元法,即可将它化为一元一次方程来解,可求得方程组
2x+3y=12
3x-3y=6
有唯一解.
我们也知道二元一次方程2x+3y=12的解有无数个,而在实际问题中我们往往只需要求出其正整数解.下面是求二元一次方程2x+3y=12的正整数解的过程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x
∵x、y为正整数,∴
x>0
12-2x>0
则有0<x<6
又y=4-
2
3
x为正整数,则
2
3
x为正整数,所以x为3的倍数.
又因为0<x<6,从而x=3,代入:y=4-
2
3
×3=2
∴2x+3y=12的正整数解为
x=3
y=2

解决问题:
(1)九年级某班为了奖励学习进步的学生,花费35元购买了笔记本和钢笔两种奖品,其中笔记本的单价为3元/本,钢笔单价为5元/支,问有几种购买方案?
(2)试求方程组
2x+y+z=10
3x+y-z=12
的正整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,然后解答后面的问题:
我们知道二元一次方程组
2x+3y=12
3x-3y=6
的求解方法是消元法,即可将它化为一元一次方程来解,可求得方程组
2x+3y=12
3x-3y=6
有唯一解.
我们也知道二元一次方程2x+3y=12的解有无数个,而在实际问题中我们往往只需要求出其正整数解.
下面是求二元一次方程2x+3y=12的正整数解的过程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x

∵x、y为正整数,∴
x>0
12-2x>0
则有0<x<6
又y=4-
2
3
x
为正整数,则
2
3
x
为正整数,所以x为3的倍数
又因为0<x<6,从而x=3,代入:y=4-
2
3
×3
=2
∴2x+3y=12的正整数解为
x=3
y=2

问题:(1)若 
6
x-2
为正整数,则满足条件的x的值有几个.(  )
A、2    B、3    C、4   D、5
      (2)九年级某班为了奖励学习进步的学生,花费35元购买了笔记本和钢笔两种奖品,其中笔记本的单价为3元/本,钢笔单价为5元/支,问有几种购买方案?
      (3)试求方程组
2x+y+z=10
3x+y-z=12
 的正整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列材料:
为了求1+2+22+23+…+22011的值,可令S=1+2+22+23+…+22011①,
则 2S=2+22+23+…+22012②,
②-①得 2S-S=22012-1,即S=22012-1,
∴1+2+22+23+…+22011=22012-1
仿照以上推理,请计算:1+4+42+43…+42011

查看答案和解析>>

同步练习册答案