精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,将抛物线绕着原点旋转180°,所得抛物线的解析式是(   ).
A.y=-(x-1)2-2B.y=-(x+1)2-2
C.D.
A

试题分析:先将原抛物线化为顶点式,易得出与y轴交点,绕与y轴交点旋转180°,那么根据中心对称的性质,可得旋转后的抛物线的顶点坐标,即可求得解析式.
解:由原抛物线解析式可变为:
∴顶点坐标为(-1,2),
又由抛物线绕着原点旋转180°,
∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点原点中心对称,
∴新的抛物线的顶点坐标为(1,-2),
∴新的抛物线解析式为:
故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

将抛物线向左平移个单位长度,使之过点,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=一x2+ax+b图象与轴交于,两点,且与轴交于点.

(1)则的形状为                 
(2)在此抛物线上一动点,使得以四点为顶点的四边形是梯形,则点的坐标为                     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.

(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过点A(6,0)、B(0,-4).

(1)求该抛物线的解析式;
(2)若抛物线对称轴与x轴交于点C,连接BC,点P在抛物线对称轴上,使△PBC为等腰三角形,请写出符合条件的所有点P坐标.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线与x轴交于点A(1,0),B(3,0),且过点C(0,﹣3).

(1)求抛物线的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=﹣x上,并写出平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某玩具批发商销售每件进价为40元的玩具,市场调查发现,若以每件50元的价格销售,平均每天销售90件,单价每提高1元,平均每天就少销售3件.
(1)平均每天的销售量y(件)与销售价x(元/件)之间的函数关系式为         
(2)求该批发商平均每天的销售利润W(元)与销售价x(元/件)之间的函数关系式;
(3)物价部门规定每件售价不得高于55元,当每件玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数(的单位:秒,的单位:米)可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是(  )
A.0.71sB.0.70sC.0.63sD.0.36s

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=1200

(1)求这条抛物线的表达式;
(2)连接OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.

查看答案和解析>>

同步练习册答案