精英家教网 > 初中数学 > 题目详情
精英家教网如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若DE=4,AD=6,求⊙O半径.
分析:(1)证明OA⊥AE就能得到AE是⊙O的切线;
(2)通过证明Rt△BAD∽Rt△AED,再利用对应边成比例关系从而求出⊙O半径的长.
解答:精英家教网(1)证明:连接OA.
∵AO=DO,
∴∠OAD=∠ODA.(1分)
∵DA平分∠BDE,
∴∠ODA=∠EDA,
∴∠OAD=∠EDA.(1分)
∵∠EAD+∠EDA=90°,
∴∠EAD+∠OAD=90°,即∠OAE=90°.(1分)
∴OA⊥AE,
∴AE是⊙O的切线.(1分)

(2)解:∵BD是⊙O的直径,
∴∠BAD=90°,
∵∠AED=90°,∠ADE=∠ADB,(1分)
∴Rt△BAD∽Rt△AED.(1分)
DE
AD
=
AD
BD
.(1分)
∴BD=
AD2
DE
=
62
4
=9,
即⊙O是半径为4.5.(1分)
点评:主要考查学生对相似三角形的判定及性质的运用,及切线的求法等知识点的掌握情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案