【题目】如图,在平面直角坐标系中的三点A(1,0),B(-1,0),P(0,-1),将线段AB沿y轴向上平移m(m>0)个单位长度,得到线段CD,二次函数y=a(x-h)2+k的图象经过点P,C,D.
(1)当m=1时,a=______;当m=2时,a=______;
(2)猜想a与m的关系,并证明你的猜想;
(3)将线段AB沿y轴向上平移n(n>0)个单位长度,得到线段C1D1,点C1,D1分别与点A,B对应,二次函数y=2a(x-h)2+k的图象经过点P,C1,D1.
①求n与m之间的关系;
②当△COD1是直角三角形时,直接写出a的值.
【答案】(1)2,3;(2)a=m+1.证明见解析;(3)①;②当△COD1是直角三角形时,a的值是或2.
【解析】
(1)分别把和代入可得的坐标,根据抛物线顶点写出解析式为:,再代入或的坐标即可;
(2)根据线段沿轴向上平移个单位长度,得到线段,写出和的坐标,同理将的坐标代入解析式中可得结论;
(3)①同理可得:,由(2)中得:,列等式可得;
②分别以三个顶点为直角顶点,由勾股定理列方程可得的值.
解:(1)当时,,,
抛物线顶点,
,
把代入得:,
当时,,,
抛物线顶点,
,
把代入得:,
,
故答案为:2;3;
(2),理由是:
由题意得:,
把代入抛物线的解析式中得:,
(3)①由题意得:,,
把代入抛物线的解析式中得:,
,
由(2)知:,
,
;
②分三种情况:
,,,
当时,是直角三角形,如图1,
由勾股定理得:,
,
,
,
(舍,;
当时,是直角三角形,如图2,
由勾股定理得:,
,
,
,
(舍,;
当,是直角三角形,
同理得:,
,
,
△,
此方程无实数解,
综上所述,当是直角三角形时,的值是或2.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个判断:①当x>0时,y>0;②当x>1时,y随x的增大而减少;③m>-1;④当a=-1时,b=3;其中,判断正确的序号是( )
A.①②B.②③C.①③D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线l及直线l外一点P.
求作:直线,使得.
作法:如图,
①任意取一点K,使点K和点P在直线l的两旁;
②以P为圆心,长为半径画弧,交l于点,连接;
③分别以点为圆心,以长为半径画弧,两弧相交于点Q(点Q和点A在直线的两旁);
④作直线.
所以直线就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接,
______,______,
四边形是平行四边形(__________)(填推理依据).
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于点C,连接AD,OC.若△ABO的周长为,AD=2,则△ACO的面积为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.如图2,则抛物线y=x的“完美三角形”斜边AB的长________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于、两点(点在点的左边),与轴交于点,点是抛物线的顶点.
(1)求、、三点的坐标;
(2)连接,,,若点为抛物线上一动点,设点的横坐标为,当时,求的值(点不与点重合);
(3)连接,将沿轴正方向平移,设移动距离为,当点和点重合时,停止运动,设运动过程中与重叠部分的面积为,请直接写出与之间的函数关系式,并写出相应自变量的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】延迟开学期间,学校为了全面分析学生的网课学习情况,进行了一次抽样调查(把学习情况分为三个层次,:能主动完成老师布置的作业并合理安排课外时间自主学习;:只完成老师布置的作业;:不能完成老师布置的作业),并将调查结果绘制成图1和图2的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了__________名学生;
(2)将条形图补充完整;
(3)图2中所占的圆心角的度数为__________度;
(4)如果学校开学后对层次的学生进行奖励,根据抽样调查结果,请你估计该校1600名学生中大约有多少名学生能获得奖励?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息.
(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价.
(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?
“读书节”活动计划书 | ||
书本类别 | A类 | B类 |
进价(单位:元) | 18 | 12 |
备注 | 1.用不超过16800元购进A、B两类图书共1000本 2.A类图书不少于600本 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司计划投资、两种产品,若只投资产品,所获得利润(万元)与投资金额(万元)之间的关系如图所示,若只投资产品,所获得利润(万元)与投资金额(万元)的函数关系式为.
(1)求与之间的函数关系式;
(2)若投资产品所获得利润的最大值比投资产品所获得利润的最大值少万元,求的值;
(3)该公司筹集万元资金,同时投资、两种产品,设投资产品的资金为万元,所获得的总利润记作万元,若时,随的增大而减少,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com