【题目】在平面坐标坐标系中,点的坐标为,点的变换点的坐标定义如下:当时,点的坐标为;当时,点的坐标为.
已知点,点,点.
()点的变换点的坐标是__________.
点的变换点为,连接,,则__________.
()点的变换点为,随着的变化,点会运动起来,请在备用图()中画出点的运动路径.
()若是等腰三角形,请直接写出此时的值:__________.
【答案】();.()点的运动路径见解析.()见解析.
【解析】试题分析:
(1)①按照变换点的定义写出A′的坐标即可;②按照变换点的定义根据点B的坐标写出点B′的坐标,如图,过点B作BD⊥x轴于点D,过点B′作B′E⊥x轴于点E,则由已知易证△BDO≌△OEB′,从而可证得∠BOD=∠OB′E,结合∠OB′E+∠EOB′=90°,即可证得∠BOB′=90°;
(2)①由变换点的定义可得,当n<2时,点C(2,n)的变换点的坐标是(-2,n);②当时,点C(2,n)的变换点的坐标是(-n,2),由此即可画出点C的运动路线;
(3)由题意可知:,,连接,以为圆心,长度为半径作圆,交点的运动路径于点;以为圆心,长为半径作圆,交点的运动路径于点,;作线段的垂直平分线,交点的运动路径于点,;如图所示,,,,,均为所求点的位置,再根据已知条件计算出对应的n的值即可.
试题解析:
()∵,,
∴,
∵,,
∴,.
()点的运动路径如图所示:
()如图:,,连接,
以为圆心,长度为半径作圆,交点的运动路径于点,
以为圆心,长为半径作圆,交点的运动路径于点,,
作线段的垂直平分线,交点的运动路径于点,,
如图所示,,,,,均为所求点的位置,
∵,,
∴,
∵为等腰直角三角形,
∴,
∴,,
∵,
∴,
∵,,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴.
综上所述,的值是,,,,.
科目:初中数学 来源: 题型:
【题目】在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下两幅统计图.请根据相关信息,解答下列问题:
(1)扇形统计图中a= ,初赛成绩为1.70m所在扇形图形的圆心角为
(2)补全条形统计图;
(3)这组初赛成绩的众数是 m,中位数是 ;
(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m的运动员杨强能否进入复赛?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB.过点B作x轴的垂线、过点A作y轴的垂线,两直线相交于点D.
(1)求此抛物线的对称轴;
(2)当t为何值时,点D落在抛物线上?
(3)是否存在t,使得以A、B、D为顶点的三角形与△PEB相似?若存在,求此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我区积极开展“体育大课间”活动,引导学生坚持体育锻炼.某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:足球四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:
(1)求样本中最喜欢B项目的人数百分比和其所在扇形图中的圆心角的度数;
(2)请把条形统计图补充完整;
(3)已知该校有1000人,请根据样本估计全校最喜欢足球的人数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com