精英家教网 > 初中数学 > 题目详情

如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是________.


分析:连接CH,可知△CFH≌△CDH(HL),故可求∠DCH的度数;根据三角函数定义求解.
解答:解:连接CH.
∵四边形ABCD,四边形EFCG都是正方形,且正方形ABCD绕点C旋转后得到正方形EFCG,
∴∠F=∠D=90°,
∴△CFH与△CDH都是直角三角形,
在Rt△CFH与Rt△CDH中,

∴△CFH≌△CDH(HL).
∴∠DCH=∠DCF=(90°-30°)=30°.
在Rt△CDH中,CD=3,
∴DH=tan∠DCH×CD=
点评:此题主要考查旋转变换的性质及三角函数的定义,作出辅助线是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,边长为
π2
的正△ABC,点A与原点O重合,若将该正三角形沿数轴正方向翻滚一周,点A恰好与数轴上的点A′重合,则点A′对应的实数是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图将边长为1的正方形OAPB沿轴正方向连续翻转2006次,点P依次落在点,……的位置,则的横坐标=_________.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年新人教版九年级(上)期中数学试卷(7)(解析版) 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案