精英家教网 > 初中数学 > 题目详情

已知二次函数的图象的对称轴为x=2,函数的最小值为3,且图象经过点(- 1,5),求此二次函数图象的关系式

y=2\9x-8\9x+35\9

解析解:根据题意设二次函数的解析式为y=a(x-2)2+3;
将点(-1,5)代入得,a=2/9,
∴二次函数的解析式为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数的图象的对称轴为x=2,函数的最小值为3,且图象经过点(-1,5),求此二次函数图象的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;

(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为     

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.

①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,

请求出此时t的值;若不存在,请说明理由;

②请求出S关于t的函数关系式,并写出自变量t的取值范围;

③设S0是②中函数S的最大值,直接写出S0的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;

(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为     

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.

①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,

请求出此时t的值;若不存在,请说明理由;

②请求出S关于t的函数关系式,并写出自变量t的取值范围;

③设S0是②中函数S的最大值,直接写出S0的值.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年浙江杭州萧山党湾镇初中九年级12月质量检测数学试卷(解析版) 题型:解答题

如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;

(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为    

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.

①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;

②请求出S关于t的函数关系式,并写出自变量t的取值范围;

③设S0是②中函数S的最大值,直接写出S0的值.

 

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(内蒙古呼和浩特卷)数学(解析版) 题型:解答题

如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;

(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为    

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.

①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;

②请求出S关于t的函数关系式,并写出自变量t的取值范围;

③设S0是②中函数S的最大值,直接写出S0的值.

 

查看答案和解析>>

同步练习册答案