解:(1)∵二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),
∴设二次函数的解析式为:y=a(x+3)(x+1)。
∵二次函数的图象经过点C(0,3),∴3=a×3×1,解得a=1。
∴二次函数的解析式为:y=(x+3)(x+1),即y =x
2+4x+3。
(2)证明:在二次函数解析式y=x
2+4x+3中,当x=﹣4时,y=3,∴P(﹣4,3)。
∵P(﹣4,3),C(0,3),∴PC=4,PC∥x轴。
∵一次函数y=kx﹣4k(k≠0)的图象交x轴于点Q,当y=0时,x=4,∴Q(4,0),OQ=4。
∴PC=OQ。
又∵PC∥x轴,∴四边形POQC是平行四边形。
∴∠OPC=∠AQC。
(3)①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.
如答图1所示,过点N作ND⊥x轴于点D,则ND∥OC,
∴△QND∽△QCO。
∴
,即
,
解得:
。
设S=S
△AMN,则:
。
又∵AQ=7,点M的速度是每秒3个单位长度,
∴点M到达终点的时间为t=
,
∴
(0<t≤
)。
∵
<0,
<
,且x<
时,y随x的增大而增大,
∴当t=
时,△AMN的面积最大。
②假设直线PQ能够垂直平分线段MN,则有QM=QN,且PQ⊥MN,PQ平分∠AQC。
由QM=QN,得:7﹣3t=5﹣t,解得t=1。
此时点M与点O重合,如答图2所示,
设PQ与OC交于点E,由(2)可知,四边形POQC是平行四边形,
∴OE=CE。
∵点E到CQ的距离小于CE,
∴点E到CQ的距离小于OE。
而OE⊥x轴,
∴PQ不是∠AQC的平分线,这与假设矛盾。
∴直线PQ不能垂直平分线段MN