精英家教网 > 初中数学 > 题目详情
(2001•武汉)已知:如图,⊙O1和⊙O2相交于A、B两点,过B点作⊙O1的切线交⊙O2于D点,连接DA并延长⊙O1相交于C点,连接BC,过A点作AE∥BC与⊙O相交于E点,与BD相交于F点.
(1)求证:EF•BC=DE•AC;
(2)若AD=3,AC=1,,求EF的长.

【答案】分析:(1)连接AB,证明△ACB∽△FED,根据相似三角形的性质,可得EF•BC=DE•AC;
(2)先证出△AFB∽△BAC,利用相似三角形的性质,得=,可求出AB的长;连接BE,利用△ACB∽△EBD,利用相似三角形的性质,可得=,可求出DE的长,再将所求数据代入EF•BC=DE•AC;便可求出EF的长.
解答:(1)证明:连接AB,切线DB另一端为G
∵BD是切线
∴∠ABD=∠ACB,∠CBG=∠CAB
∵∠ABD=∠DEF
∴∠ACB=∠DEF
∵AE∥BC
∴∠CBG=∠AFB
∵∠AFB=∠DFE
∴∠CAB=∠DFE
∴△ABC∽△FDE
=
∴EF•BC=DE•AC;

(2)解:∵CB∥AE,
=
=
∴CB=
∵BD为⊙O1的切线,
∴∠ABD=∠C,
又∵CB∥AE,
∴∠ABC=∠BAF,
∴△AFB∽△BAC,
=
∴AB2=AF•BC=×=4,
∴AB=2.
又∵DB2=AD•CD,
∴DB==2
连接BE,∴△ACB∽△EBD,
=
=
∴DE=3.
∵EF•BC=DE•AC,
∴EF•=3×1,
∴EF=
点评:本题不仅考查了和圆相关的相似三角形的性质,还考查了切割线定理、圆内接四边形的性质等知识,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源:2001年湖北省武汉市中考数学试卷(解析版) 题型:解答题

(2001•武汉)已知:如图,在直角坐标系xoy中,以x轴的负半轴上一点H为圆心作⊙O与x轴交于A、B两点,与y轴交于C、D两点.以C为圆心、OC为半径作⊙C与⊙H交于F、F两点,与y轴交于O、Q两点.直线EF与AC、BC、y轴分别于M、N、G三点.直线经过A、C两点.
(1)求tan∠CNM的值;
(2)连接OM、ON,问:四边形CMON是怎样的四边形?请说明理由.
(3)如图,R是⊙C中弧EQ上的一动点(不与E点重合),过R作⊙C的切线RT,若RT与⊙H相交于S、T不同两点.问:CS•CT的值是否发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.

查看答案和解析>>

科目:初中数学 来源:2001年湖北省武汉市中考数学试卷(解析版) 题型:解答题

(2001•武汉)已知,求的值.

查看答案和解析>>

科目:初中数学 来源:2001年湖北省武汉市中考数学试卷(解析版) 题型:选择题

(2001•武汉)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为( )
A.
B.2
C.
D.

查看答案和解析>>

科目:初中数学 来源:2001年湖北省武汉市中考数学试卷(解析版) 题型:选择题

(2001•武汉)已知:⊙O的内接四边形ABCD中,AB是⊙O的直径,∠BCD=120°.过D点的切线PD与BA的延长线交于P点,则∠ADP的度数是( )

A.15°
B.30°
C.45°
D.60°

查看答案和解析>>

同步练习册答案