ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖª¾ØÐÎABCDÖУ¬±ßAB=2£¬±ßAD=1£¬ÇÒAB¡¢AD·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬µãAÓë×ø±êÔ­µãÖغϣ®½«¾ØÐÎÕÛµþ£¬Ê¹µãAÂäÔÚ±ßDCÉÏ£¬ÉèµãA¡äÊǵãAÂäÔÚ±ßDCÉϵĶÔÓ¦µã£®
£¨1£©µ±¾ØÐÎABCDÑØÖ±Ïßy=-
12
x+bÕÛµþʱ£¨Èçͼ1£©£¬ÇóµãA¡äµÄ×ø±êºÍbµÄÖµ£»
¾«Ó¢¼Ò½ÌÍø
£¨2£©µ±¾ØÐÎABCDÑØÖ±Ïßy=kx+bÕÛµþʱ£¬
¢ÙÇóµãA¡äµÄ×ø±ê£¨ÓÃk±íʾ£©£»Çó³ökºÍbÖ®¼äµÄ¹Øϵʽ£»
¢ÚÈç¹ûÎÒÃÇ°ÑÕÛºÛËùÔÚµÄÖ±ÏßÓë¾ØÐεÄλÖ÷ÖΪÈçͼ2¡¢3¡¢4ËùʾµÄÈýÖÖÇéÐΣ¬ÇëÄã·Ö±ðд³öÿÖÖÇéÐÎʱkµÄÈ¡Öµ·¶Î§£®£¨½«´ð°¸Ö±½ÓÌîÔÚÿÖÖÇéÐÎϵĺáÏßÉÏ£©kµÄÈ¡Öµ·¶Î§ÊÇ
 
£»kµÄÈ¡Öµ·¶Î§ÊÇ
 
£»kµÄÈ¡Öµ·¶Î§ÊÇ
 
£®
¾«Ó¢¼Ò½ÌÍø
·ÖÎö£º£¨1£©ÉèÖ±Ïßy=-
1
2
x+bÓëCD½»ÓÚµãE£¬ÓëOB½»ÓÚµãF£¬Á¬½ÓA¡äO£¬ÔòOE=b£¬OF=2b£¬ÉèµãA¡äµÄ×ø±êΪ£¨a£¬1£©£¬¸ù¾Ý¡÷DOA¡ä¡×¡÷OFE£¬ËùµÃ
DA¡ä
OE
=
DO
OF
£¬¼´
a
b
=
1
2b
£¬ËùÒÔa=
1
2
£®¿ÉµÃµãA¡äµÄ×ø±êΪ£¨
1
2
£¬1£©£¬Á¬½ÓA¡äE£¬ÔòA¡äE=OE=b£¬¸ù¾Ý¹´¹É¶¨ÀíÓÐA¡äE2=A¡äD2+DE2£¬¼´b2=£¨
1
2
£©2+£¨1-b£©2£¬½âµÃb=
5
8
£»
£¨2£©ÉèÖ±Ïßy=kx+bÓëOD½»ÓÚµãE£¬ÓëOB½»ÓÚµãF£¬Á¬½ÓA¡äO£¬ÔòOE=b£¬OF=-
b
k
£¬ÉèµãA¡äµÄ×ø±êΪ£¨a£¬1£©¿ÉÖ¤¡÷DOA¡ä¡×¡÷OFE£¬ËùÒÔ
DA¡ä
OE
=
DO
OF
£¬¼´
a
b
=
1
-
b
k
£¬ËùÒÔa=-k£¬A¡äµãµÄ×ø±êΪ£¨-k£¬1£©£¬Á¬½ÓA¡äE£¬ÔÚRt¡÷DEA¡äÖУ¬DA¡ä=-k£¬DE=1-b£¬A¡äE=b£¬¸ù¾ÝA¡äE2=A¡äD2+DE2£¬µÃb2=£¨-k£©2+£¨1-b£©2£¬ËùÒÔb=
k2+1
2
£®
£¨3£©¸ù¾ÝͼÏóºÍ¾ØÐεı߳¤¿ÉÖ±½ÓµÃ³ökµÄÈ¡Öµ·¶Î§£¬ÔÚÌâÖÐͼ2ÖУº-2¡Ük¡Ü-1£»Í¼3ÖУº-1¡Ük¡Ü-2+
3
£»Í¼4ÖУº-2+
3
¡Ük¡Ü0£®
½â´ð£º¾«Ó¢¼Ò½ÌÍø½â£º£¨1£©Èçͼ1£¬ÉèÖ±Ïßy=-
1
2
x+bÓëCD½»ÓÚµãE£¬ÓëOB½»ÓÚµãF£¬ÓëyÖá½»ÓÚGµã£¬Á¬½ÓA'O£¬ÔòOE=b£¬OF=2b£¬ÉèµãA¡äµÄ×ø±êΪ£¨a£¬1£©£¬
¡ß¡ÏDOA¡ä+¡ÏA¡äOF=90¡ã£¬¡ÏOFE+¡ÏA¡äOF=90¡ã£¬
¡à¡ÏDOA¡ä=¡ÏOFE£¬
¡à¡÷DOA¡ä¡×¡÷OFE£¬
¡à
DA¡ä
OE
=
OD
OF
£¬¼´
a
b
=
1
2b
£¬
¡àa=
1
2
£¬
¡àµãA¡äµÄ×ø±êΪ£¨
1
2
£¬1£©£¬
Á¬½ÓA¡äE£¬ÔòA¡äE=OE=b£¬
ÔÚRt¡÷DEA¡äÖУ¬¸ù¾Ý¹´¹É¶¨ÀíÓÐA¡äE2=A¡äD2+DE2£¬
¼´b2=£¨
1
2
£©2+£¨1-b£©2£¬
½âµÃb=
5
8
£»

£¨2£©Èçͼ1£¬ÉèÖ±Ïßy=kx+bÓëOD½»ÓÚµãE£¬ÓëOB½»ÓÚµãF£¬Á¬½ÓA'O£¬Ôò£º
OE=b£¬OF=-
b
k
£¬
ÉèµãA¡äµÄ×ø±êΪ£¨a£¬1£©£¬
¡ß¡ÏDOA¡ä+¡ÏA¡äOF=90¡ã£¬¡ÏOFE+¡ÏA'OF=90¶È£¬
¡à¡ÏDOA¡ä=¡ÏOFE£¬
¡à¡÷DOA¡ä¡×¡÷OFE£¬
¡à
DA¡ä
OE
=
DO
OF
£¬¼´
a
b
=
1
-
b
k
£¬
¡àa=-k£®
¡àA¡äµãµÄ×ø±êΪ£¨-k£¬1£©£®£¨7·Ö£©
Á¬½ÓA¡äE£¬ÔÚRt¡÷DEA¡äÖУ¬DA¡ä=-k£¬DE=1-b£¬A¡äE=b£®
¡ßA¡äE2=A¡äD2+DE2£¬
¡àb2=£¨-k£©2+£¨1-b£©2£¬
¡àb=
k2+1
2
£»

£¨3£©ÔÚÌâÖÐͼ2ÖУº-2¡Ük¡Ü-1£»
ͼ3ÖУº-1¡Ük¡Ü-2+
3
£»
ͼ4ÖУº-2+
3
¡Ük¡Ü0£®
µãÆÀ£ºÕâÊÇÒ»µÀÓйØÕÛµþµÄÎÊÌ⣬Ö÷Òª¿¼²éÒ»´Îº¯Êý¡¢ËıßÐΡ¢ÏàËÆÐεÈ֪ʶ£¬ÊÔÌâÖйᴩÁË·½³Ì˼ÏëºÍÊýÐνáºÏµÄ˼Ï룬Çë×¢ÒâÌå»á£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

28¡¢ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãPµ½xÖáµÄ¾àÀëΪ8£¬µ½yÖáµÄ¾àÀëΪ6£¬ÇÒµãPÔÚµÚ¶þÏóÏÞ£¬ÔòµãP×ø±êΪ
£¨-6£¬8£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

10¡¢ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãP1£¨a£¬-3£©ÓëµãP2£¨4£¬b£©¹ØÓÚyÖá¶Ô³Æ£¬Ôòa+b=
-7
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÓÐA£¨2£¬3£©¡¢B£¨3£¬2£©Á½µã£®
£¨1£©ÇëÔÙÌí¼ÓÒ»µãC£¬Çó³öͼÏó¾­¹ýA¡¢B¡¢CÈýµãµÄº¯Êý¹Øϵʽ£®
£¨2£©·´Ë¼µÚ£¨1£©Ð¡ÎÊ£¬¿¼ÂÇÓÐûÓиü¼ò½ÝµÄ½âÌâ²ßÂÔ£¿Çë˵³öÄãµÄÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¿ª¿ÚÏòϵÄÅ×ÎïÏßÓëxÖá½»ÓÚA¡¢BÁ½µã£¬DÊÇÅ×ÎïÏߵĶ¥µã£¬OΪ¾«Ó¢¼Ò½ÌÍø×ø±êÔ­µã£®A¡¢BÁ½µãµÄºá×ø±ê·Ö±ðÊÇ·½³Ìx2-4x-12=0µÄÁ½¸ù£¬ÇÒcos¡ÏDAB=
2
2
£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý½âÎöʽ£»
£¨2£©×÷AC¡ÍAD£¬AC½»Å×ÎïÏßÓÚµãC£¬ÇóµãCµÄ×ø±ê¼°Ö±ÏßACµÄº¯Êý½âÎöʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÔÚxÖáÉÏ·½µÄÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹¡÷APCµÄÃæ»ý×î´ó£¿Èç¹û´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±êºÍ¡÷APCµÄ×î´óÃæ»ý£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

18¡¢ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬°ÑÒ»¸öͼÐÎÏÈÈÆ×ÅÔ­µã˳ʱÕëÐýתµÄ½Ç¶ÈΪ¦È£¬ÔÙÒÔÔ­µãΪλËÆÖÐÐÄ£¬ÏàËƱÈΪkµÃµ½Ò»¸öеÄͼÐΣ¬ÎÒÃÇ°ÑÕâ¸ö¹ý³Ì¼ÇΪ¡¾¦È£¬k¡¿±ä»»£®ÀýÈ磬°ÑͼÖеġ÷ABCÏÈÈÆ×ÅÔ­µãO˳ʱÕëÐýתµÄ½Ç¶ÈΪ90¡ã£¬ÔÙÒÔÔ­µãΪλËÆÖÐÐÄ£¬ÏàËƱÈΪ2µÃµ½Ò»¸öеÄͼÐΡ÷A1B1C1£¬¿ÉÒÔ°ÑÕâ¸ö¹ý³Ì¼ÇΪ¡¾90¡ã£¬2¡¿±ä»»£®
£¨1£©ÔÚͼÖл­³öËùÓзûºÏÒªÇóµÄ¡÷A1B1C1£»
£¨2£©Èô¡÷OMNµÄ¶¥µã×ø±ê·Ö±ðΪO£¨0£¬0£©¡¢M£¨2£¬4£©¡¢N£¨6£¬2£©£¬°Ñ¡÷OMN¾­¹ý¡¾¦È£¬k¡¿±ä»»ºóµÃµ½¡÷O¡äM¡äN¡ä£¬ÈôµãMµÄ¶ÔÓ¦µãM¡äµÄ×ø±êΪ£¨-1£¬-2£©£¬Ôò¦È=
0¡ã£¨»ò360¡ãµÄÕûÊý±¶£©
£¬k=
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸