精英家教网 > 初中数学 > 题目详情
如图,AB、AC分别是⊙O的直径和弦,点D为劣弧
AC
上一点,弦ED交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.若PC=PF,求证:AB⊥ED.
分析:作辅助线,连接OC.根据切线的性质,OC⊥PC.根据PC=PF,OC=OA,可得:∠PCF=∠PFC,∠OCF=∠OAC.在Rt△FHA中,可得:∠FHA=90°,故AB⊥ED.
解答:证明:连接OC,
∵PC为⊙O的切线,
∴∠OCP=∠FCP+∠OCF=90°,
∵PC=PF,
∴∠PCF=∠PFC,
∵OA=OC,
∴∠OCA=∠OAC,
∵∠CFP=∠AFH,
∴∠AFH+∠OAC=90°,
∴∠AHF=90°,
即:AB⊥ED.
点评:本题主要考查切线的性质:圆的切线垂直于经过切点的半径.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图,AB、AC分别为⊙O的直径和弦,D为劣弧AC上一点,DE⊥AB于H交⊙O于E,交AC于点F,P为ED延长线上的一点.
(1)当△PCF满足什么条件时,PC与⊙O相切并说明理由;
(2)当D点在劣弦AC的什么位置时,使AD2=DE•DF,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB、AC分别切⊙O于M、N两点,点D在⊙O上,且∠BDC=60°,则∠A=(  )°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB、AC分别为⊙O的内接正六边形、内接正方形的一边,BC是圆内接n边形的一边,则n等于(  )

查看答案和解析>>

科目:初中数学 来源:1998年全国中考数学试题汇编《四边形》(01)(解析版) 题型:选择题

(1998•湖州)已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于( )

A.140°
B.120°
C.100°
D.80°

查看答案和解析>>

同步练习册答案