分析 (1)根据对等四边形的定义,进行画图即可;
(2)根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.
解答 解:(1)如图1所示(画2个即可).
;
(2)如图2,点D的位置如图所示:
①若CD=AB,此时点D在D1的位置,CD1=AB=13;
②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,
过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,
设BE=x,
∵tan∠PBC=$\frac{12}{5}$,
∴AE=$\frac{12}{5}$,
在Rt△ABE中,AE2+BE2=AB2,
即x2+($\frac{12}{5}$x)2=132,
解得:x1=5,x2=-5(舍去),
∴BE=5,AE=12,
∴CE=BC-BE=6,
由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,
在Rt△AFD2中,FD2=$\sqrt{{AD}_{2}^{2}-A{F}^{2}}$=$\sqrt{85}$,
∴CD2=CF-FD2=12-$\sqrt{85}$,
CD3=CF+FD2=12+$\sqrt{85}$,
综上所述,CD的长度为13、12-$\sqrt{85}$或12+$\sqrt{85}$.
故答案为:13、12-$\sqrt{85}$或12+$\sqrt{85}$.
点评 本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.在(2)中注意分类讨论思想的应用、勾股定理的应用.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 45° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com