精英家教网 > 初中数学 > 题目详情
已知一次函数y=kx+b,当x=-4时y的值是9,当x=2时y的值为-3.
(1)求这个函数的解析式;
(2)在直角坐标系内画出这个函数的图象.
(1)∵一次函数y=kx+b,当x=-4时y的值是9,当x=2时y的值为-3,
9=-4k+b
-3=2k+b

解之得:
k=-2
b=1

∴y=-2x+1;

(2)画出函数图象:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,一次函数的图象经过A,B两点,则这个一次函数的解析式是(  )
A.y=
3
2
x-2
B.y=
1
2
x-2
C.y=
1
2
x+2
D.y=
3
2
x+2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知平面直角坐标系内,一次函数y=kx+2的图象与x轴相交于点A(-2
3
,0)
,与y轴相交于点B.
(1)求一次函数的解析式,并在直角坐标系中画出它的图象;
(2)若以原点O为圆心的⊙O与直线AB相切于点C,求⊙O的半径和点C的坐标;
(3)在x轴上是否存在点P,使△PAB为等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=图象过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.
(1)根据现有的信息,请求出题中的一次函数的解析式.
(2)根据关系式画出这个函数图象,
(3)过点B能不能画出一直线BC将△ABO(O为坐标原点)分成面积比为1:2的两部分?如能,可以画出几条,并求出其中一条直线所对应的函数关系式,其它的直接写出函数关系式;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.
(1)求直线l2的函数关系式;
(2)求△ADC的面积;
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知正方形ABCD的边长为4cm,有一动点P以1cm/s的速度沿A-B-C-D的路径运动,设P点运动的时间为x(s)(0<x<12),△ADP的面积为ycm2
(1)求y与x的函数关系式;
(2)在给定的平面直角坐标系中画出上述函数关系的图象.
(3)点P运动多长时间时,△ADP是等腰三角形(只写结果).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度之差是(  )
A.4km/hB.5km/hC.6km/hD.8km/h

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l:y=
3
2
x+3交x轴、y轴于A、B点,四边形ABCD为等腰梯形,BCAD,D点坐标为(6,0).
(1)求:A、B、C点坐标;
(2)若直线l沿x轴正方向平移m个(m>0)单位长度,与AD、BC分别交于N、M点,当四边形ABMN的面积为12个单位面积时,求平移后的直线的解析式;
(3)如果B点沿BC方向,从B到C运动,速度为每秒2个单位长度,A点同时沿AD方向,从A到D运动,速度为每秒3个单位长度,经过t秒的运动,A到达A′处,B到达B′处,问:是否能使得A′B′平分∠BB′D?若能,请求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知一次函数y=-
2
3
x+b
和y=ax-2的图象交于点P(-1,2),则根据图象可得不等式-
2
3
x+b
>ax-2的解集是______.

查看答案和解析>>

同步练习册答案