精英家教网 > 初中数学 > 题目详情
17.如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是(  )
A.25°B.35°C.50°D.65°

分析 先根据三角形内角和定理求出∠C的度数,然后根据两直线平行内错角相等即可求出∠ABC的大小.

解答 解:∵CB⊥DB,
∴∠CBD=90°,
∴∠C+∠D=90°,
∵∠D=65°,
∴∠C=25°,
∵AB∥CD,
∴∠BAC=∠C=25°.
故选A.

点评 此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,在四边形ABCD中,AD∥BC,∠ABC=90°.点E为边AD上一点,将△ABE沿直线BE折叠,使A点落在四边形对角线BD上的P点处,EP的延长线交直线BC于点F.设AD=a,AB=b,BC=c.
(1)若∠ABE=30°,AE=3.请写出BE的长度;
(2)求证:△ABP∽△BFE;
(3)当四边形EFCD为平行四边形时.试求出a、b、c的数量之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.实验数据显示:一般成人喝半斤低度白酒后,其血液中酒精含量y(毫克/百毫升)与时间x(小时)的关系为:当0≤x≤1.5时,y与x成二次函数关系,即y=-200x2+400x;当x≥1.5时,y与x成反比例函数关系,即y=$\frac{k}{x}$.
(1)当x=1.5时,求y的值.
(2)假设某驾驶员晚上在家喝完半斤低度白酒,求有多长时间其血液中酒精含量不低于38毫克/百毫升?(答案精确到0.01小时)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知双曲线y=$\frac{1}{x}$(x>0),直线l1:y-$\sqrt{2}$=k(x-$\sqrt{2}$)(k<0)过定点F且与双曲线交于A,B两点,设A(x1,y1),B(x2,y2)(x1<x2),直线l2:y=-x+$\sqrt{2}$.
(1)若k=-1,求△OAB的面积S;
(2)若AB=$\frac{5}{2}$$\sqrt{2}$,求k的值;
(3)设N(0,2$\sqrt{2}$),P在双曲线上,M在直线l2上且PM∥x轴,求PM+PN最小值,并求PM+PN取得最小值时P的坐标.(参考公式:在平面直角坐标系中,若A(x1,y1),B(x2,y2)则A,B两点间的距离为AB=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.
特别地,当点P′与圆心C重合时,规定CP′=0.
(1)当⊙O的半径为1时.
①分别判断点M(2,1),N($\frac{3}{2}$,0),T(1,$\sqrt{3}$)关于⊙O的反称点是否存在?若存在,求其坐标;
②点P在直线y=-x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;
(2)⊙C的圆心在x轴上,半径为1,直线y=-$\frac{\sqrt{3}}{3}$x+2$\sqrt{3}$与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则$\frac{1}{AM}$+$\frac{1}{AN}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.|-$\frac{1}{2}$|的倒数是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:
老师在课堂上放手让学生提问和表达E
A.从不    B.很少    C.有时     D.常常     E.总是
答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.

根据以上信息,解答下列问题:
(1)该区共有3200名初二年级的学生参加了本次问卷调查;
(2)请把这幅条形统计图补充完整;
(3)在扇形统计图中,“总是”所占的百分比为42%.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.

查看答案和解析>>

同步练习册答案