14£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏACB=90¡ã£¬AC=8cm£¬BC=6cm£¬µãD¡¢EÔÚ±ßACÉÏ£¬AD=4cm£¬µãEÊÇCDµÄÖе㣬ÒÔDEΪ±ßµÄ¾ØÐÎDEFGµÄ¶¥µãGÔÚ±ßABÉÏ£¬¶¯µãP´ÓµãA³ö·¢£¬ÒÔ1cm/sµÄËÙ¶ÈÑØACÏòµãCÔ˶¯£¬¹ýµãP×÷PQ¡ÎAB½»BCÓÚµãQ£¬ÉèµãPµÄÔ˶¯Ê±¼äΪt£¨s£©£¬¾ØÐÎDEFGÓë¡÷PCQÖصþ²¿·ÖͼÐεÄÃæ»ýΪs£¨cm2£©£®
£¨1£©ÔÚµãPµÄÔ˶¯¹ý³ÌÖУ¬µ±Ï߶ÎPQÓë¾ØÐÎDEFGµÄ±ßDGÓн»µã£¬Áî½»µãΪH£¬Óú¬tµÄ´úÊýʽ±íʾÏ߶ÎDHµÄ³¤£®
£¨2£©ÇósÓëtµÄº¯Êý¹Øϵʽ£®
£¨3£©µãP³ö·¢µÄͬʱ£¬¶¯µãM´ÓµãD³ö·¢£¬ÒÔacm/sµÄËÙ¶ÈÑØD-G-F-E-FÔ˶¯£¬µãNÊÇÏ߶ÎPQÖе㣬ÔÚµãPµÄÔ˶¯¹ý³ÌÖУ¬ÈôµãM¡¢NÄܹ»ÖغÏÔÚ¾ØÐÎDEFGµÄ±ßÉÏ£¬Ç󶯵ãMµÄËÙ¶Èa£®

·ÖÎö £¨1£©ÓÉ¡÷ADG¡×¡÷ACBÇó³öDG£¬ÔÙÓÉ¡÷PDH¡×ADG£¬Çó³öDH£¬¼´¿É£»
£¨2£©·ÖËĶε±0£¼t¡Ü2ʱ£¬µ±2£¼t¡Ü4ʱ£¬µ±4£¼t¡Ü6ʱ£¬µ±6£¼t¡Ü8ʱ·Ö±ðÇó³öÃæ»ý¼´¿É£»
£¨3£©ÏÈÅжϳö£¬Ö»ÓеãMÔÚEFÉÏʱ£¬µãPÓëDÖغϣ¬M£¬N²ÅÄÜÖغϣ¬´Ëʱt=4£¬µãM×ߵķ³ÌΪat£®ÒÀÌâÒ⣬ÓÉat=8-$\frac{3}{2}$»òat=8+$\frac{3}{2}$£®

½â´ð ½â£º£¨1£©ÓÉÔ˶¯ÓУ¬AP=t£¬AD=4£¬
¡àPD=4-t£¬
¡ß¡÷ADG¡×¡÷ACB£¬
¡à$\frac{AD}{AC}=\frac{DG}{BC}$£¬
¡àDG=3£¬
¡ß¡÷PDH¡×ADG£¬
¡à$\frac{DH}{DG}=\frac{PD}{AD}$£¬
¡à$\frac{DH}{3}=\frac{4-t}{4}$£¬
¡àDH=$\frac{3}{4}$£¨4-t£©=3-$\frac{3}{4}$t£¬
£¨2£©µ±0£¼t¡Ü2ʱ£¬Èçͼ1£¬

S=SËıßÐÎDEFG-S¡÷GFH=3¡Á2-$\frac{1}{2}$t¡Á$\frac{3}{4}$t=6-$\frac{3}{8}$t2£¬
µ±2£¼t¡Ü4ʱ£¬Èçͼ2£¬

S=SËıßÐÎDEFG=$\frac{1}{2}$¡Á2[$\frac{3}{4}$£¨4-t£©+$\frac{3}{4}$£¨6-t£©]=$\frac{15}{2}$-$\frac{3}{2}$t£¬
µ±4£¼t¡Ü6ʱ£¬Èçͼ3£¬

S=S¡÷GFH=$\frac{1}{2}$¡Á£¨6-t£©¡Á$\frac{3}{4}$£¨6-t£©=$\frac{3}{8}$t2-$\frac{9}{2}$t+$\frac{27}{2}$£¬
µ±6£¼t¡Ü8ʱ£¬S=0£¬
£¨3£©ÓÉÌâÒâÖª£¬Ö»ÓеãMÔÚEFÉÏʱ£¬µãPÓëDÖغϣ¬M£¬N²ÅÄÜÖغϣ¬´Ëʱt=4£¬
µãM×ߵķ³ÌΪat£®ÒÀÌâÒ⣬ÓÉat=8-$\frac{3}{2}$»òat=8+$\frac{3}{2}$£¬
¡àa=$\frac{13}{8}$»òa=$\frac{19}{8}$£®

µãÆÀ ´ËÌâÊÇËıßÐÎ×ÛºÏÌ⣬Ö÷Òª¿¼²éÁËÈý½ÇÐÎÏàËÆ£¬Èý½ÇÐΣ¬ËıßÐεÄÃæ»ýµÄ¼ÆËã·½·¨£¬½â±¾ÌâµÄ¹Ø¼üÊDZíʾ³öÏ߶Σ¬Ò²ÊÇÄѵ㣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®½«Ò»ÕžØÐÎֽƬ¶ÔÕÛ£¬ÓñʼâÔÚÉÏÃæÔú¸ö¡°R¡±£¬ÔÙÆÌƽ£¬¿ÉÒÔ¿´µ½£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªÒ»´Îº¯Êýy=kx+6£¬ÇëÄãдһ¸ökµÄÖµ£ºk=-1£¬Ê¹yµÄÖµËæxµÄÔö´ó¶ø¼õС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Ò»´Îº¯Êýy=kx+1ÖУ¬±äÁ¿yµÄÖµËæxµÄÖµÔö´ó¶øÔö´ó£¬ÔòkµÄÈ¡Öµ·¶Î§Îªk£¾0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÖ±Ïßy=2x+3ÓëÅ×ÎïÏßy=2x2-3x+1½»ÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬Ôò$\frac{1}{{x}_{1}+1}+\frac{1}{{x}_{2}+1}$=$\frac{9}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔĶÁ£ºÈçͼ1£¬µãP£¨x£¬y£©ÔÚƽÃæÖ±½Ç×ø±êÖУ¬¹ýµãP×÷PA¡ÍxÖᣬ´¹×ãΪA£¬½«µãPÈÆ´¹×ãA˳ʱÕëÐýת½Ç¦Á£¨0¡ã£¼¦Á£¼90¡ã£©µÃµ½¶ÔÓ¦µãP¡ä£¬ÎÒÃdzƵãPµ½µãP¡äµÄÔ˶¯ÎªÇãб¦ÁÔ˶¯£®ÀýÈ磺µãP£¨0£¬2£©Çãб30¡ãÔ˶¯ºóµÄ¶ÔÓ¦µãΪP¡ä£¨1£¬$\sqrt{3}$£©£®
ͼÐÎEÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Í¼ÐÎEÉϵÄËùÓе㶼×÷Çãб¦ÁÔ˶¯ºóµÃµ½Í¼ÐÎE¡ä£¬ÕâÑùµÄÔ˶¯³ÆΪͼÐÎEµÄÇãб¦ÁÔ˶¯£®

Àí½â
£¨1£©µãQ£¨1£¬2£©Çãб60¡ãÔ˶¯ºóµÄ¶ÔÓ¦µãQ¡äµÄ×ø±êΪ£¨1+$\sqrt{3}$£¬1£©£»
£¨2£©Èçͼ2£¬Æ½ÐÐÓÚxÖáµÄÏ߶ÎMNÇãб¦ÁÔ˶¯ºóµÃµ½¶ÔÓ¦Ï߶ÎM¡äN¡ä£¬M¡äN¡äÓëMNƽÐÐÇÒÏàµÈÂð£¿ËµÃ÷ÀíÓÉ£®
Ó¦Ó㺣¨1£©Èçͼ3£¬Õý·½ÐÎAOBCÇãб¦ÁÔ˶¯ºó£¬Æä¸÷±ßÖеãE£¬F£¬G£¬HµÄ¶ÔÓ¦µãE¡ä£¬F¡ä£¬G¡ä£¬H¡ä¹¹³ÉµÄËıßÐÎÊÇʲôÌØÊâËıßÐΣº¾ØÐΣ»
£¨2£©Èçͼ4£¬ÒÑÖªµãA£¨0£¬4£©£¬B£¨2£¬0£©£¬C£¨3£¬2£©£¬½«¡÷ABCÇãб¦ÁÔ˶¯ºóÄܲ»Äܵõ½Rt¡÷A¡äB¡äC¡ä£¬ÇÒ¡ÏA¡äC¡äB¡äΪֱ½Ç£¬ÆäÖеãA¡ä£¬B¡ä£¬C¡äΪµãA£¬B£¬CµÄ¶ÔÓ¦µã£®ÇëÇó³öcos¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª£¬Èçͼ£¬Å×ÎïÏßy=-x2+ax+bÓëxÖá´Ó×óÖÁÓÒ½»ÓÚA¡¢BÁ½µã£¬ÓëyÖáÕý°ëÖá½»ÓÚµãC£®Éè¡ÏOCB=¦Á£¬¡ÏOCA=¦Â£¬ÇÒtan¦Á-tan¦Â=2£¬OC2=OA•OB£®
£¨1£©¡÷ABCÊÇ·ñΪֱ½ÇÈý½ÇÐΣ¿ÈôÊÇ£¬Çë¸ø³öÖ¤Ã÷£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£»
£¨2£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©ÈôÅ×ÎïÏߵĶ¥µãΪP£¬ÇóËıßÐÎABPCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èô£¨x2+px-$\frac{1}{3}$£©£¨x2-3x+q£©µÄ»ýÖв»º¬xÏîÓëx3Ï
£¨1£©Çóp¡¢qµÄÖµ£»
£¨2£©Çó´úÊýʽ£¨-2p2q£©2+£¨3pq£©-1+p2013q2014µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬¡÷ABCÖУ¬DC¡ÍABÓÚD£¬BE¡ÍACÓÚE£¬ÊÔ˵Ã÷$\frac{DE}{BC}$=$\frac{AE}{AB}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸