精英家教网 > 初中数学 > 题目详情
(2012•大庆)如图所示,△ABC中,E、F、D分别是边AB、AC、BC上的点,且满足
AE
EB
=
AF
FC
=
1
2
,则△EFD与△ABC的面积比为(  )
分析:先设△AEF的高是h,△ABC的高是h′,由于
AE
EB
=
AF
FC
=
1
2
,根据比例性质易得
AE
AB
=
AF
AC
=
1
3
,而∠A=∠A,易证△AEF∽△ABC,从而易得h′=3h,那么△DEF的高就是2h,再设△AEF的面积是s,EF=a,由于相似三角形的面积比等于相似比的平方,那么S△AEF:S△ABC=1:9,于是S△ABC=9s,根据三角形面积公式易求S△DEF=2s,从而易求S△DEF:S△ABC的值.
解答:解:设△AEF的高是h,△ABC的高是h′,
AE
EB
=
AF
FC
=
1
2

AE
AB
=
AF
AC
=
1
3

又∵∠A=∠A,
∴△AEF∽△ABC,
h
h′
=
1
3
,S△AEF:S△ABC=1:9,
∴h′=3h,
∴△DEF的高=2h,
设△AEF的面积是s,EF=a,
∴S△ABC=9s,
∵S△DEF=
1
2
•EF•2h=ah=2s,
∴S△DEF:S△ABC=2:9.
故选B.
点评:本题考查了相似三角形的判定和性质,解题的关键是先证明△AEF∽△ABC,并注意相似三角形高的比等于相似比,相似三角形的面积比等于相似比的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•大庆)如图所示,将一个圆盘四等分,并把四个区域分别标上I、Ⅱ、Ⅲ、Ⅳ,只有区域I为感应区域,中心角为60°的扇形AOB绕点0转动,在其半径OA上装有带指示灯的感应装置,当扇形AOB与区域I有重叠(原点除外)的部分时,指示灯会发光,否则不发光,当扇形AOB任意转动时,指示灯发光的概率为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大庆)如图所示,已知△ACD和△ABE都内接于同一个圆,则∠ADC+∠AEB+∠BAC=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大庆)用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是
4
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大庆)如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.
(1)求∠ACB的大小;
(2)求点A到直线BC的距离.

查看答案和解析>>

同步练习册答案