精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c的图象经过A(2,4),其顶点的横坐标是
1
2
,它的图象与x轴交点为B(x1,0)和(x2,0),且x12+x22=13.求:
(1)此函数的解析式,并画出图象;
(2)在x轴上方的图象上是否存在着D,使S△ABC=2S△DBC?若存在,求出D的值;若不存在,说明理由.
(1)∵二次函数y=ax2+bx+c的图象经过A(2,4),
∴4a+2b+c=4 ①
∵顶点的横坐标是
1
2

-
b
2a
=
1
2

∵函数图象与x轴交点为B(x1,0)和(x2,0),
∴x1+x2=-
b
a
,x1x2=
c
a

∴x12+x22=(x1+x22-2x1x2=
b2-2ac
a2
=13

x12+x22=(x1+x22-2x1x2
由②得:a=-b代入①得:-2b+c=4 c=2b+4,
将a=-b c=2b+4代入③得:b2+2b(2b+4)=13b2
b=0或b=1
∵b=0不合题意,
∴b=1,a=-1,c=6
∴y=-x2+x+6;

(2)设D(x,y) 则S△ABC=
1
2
×BC×4=10,
S△DBC=
1
2
×5|y|=
5
2
y=5,
∴y=2,
将y=2代入y=-x2+x+6,
x=
17
2

D(
1+
17
2
,2)
(
1-
17
2
,2)

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线l经过A(-2,0)和B(0,2)两点,它与抛物线y=ax2在第二象限内相交于点P,且△AOP的面积为1,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=ax2+bx+c(a≠O)经过X轴上的两点A(x1,0)、B(x2,0)和y轴上的点C(0,-
3
2
),⊙P的圆心P在y轴上,且经过B、C两点,若b=
3
a,AB=2
3

(1)求抛物线的解析式;
(2)设D在抛物线上,且C,D两点关于抛物线的对称轴对称,问直线BD是否经过圆心P,并说明理由;
(3)设直线BD交⊙P于另一点E,求经过E点的⊙P的切线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m>0.
(1)求点E、F的坐标(用含m的式子表示);
(2)连接OA,若△OAF是等腰三角形,求m的值;
(3)如图(2),设抛物线y=a(x-m-6)2+h经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

设A和B为抛物线y=-3x2-2x+k与x轴的两个相异交点,M为抛物线的顶点,若△ABM为Rt△,求k的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函y=-x2-2x+m的部分图象如图所示,则关于x的一元二次方程-x2-2x+m=0的解为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

关于x的二次函数y=a(x+1)(x-m),其图象的对称轴在y轴的右侧,则实数a、m应满足(  )
A.a>0,m<-1B.a>0,m>1C.a≠0,0<m<1D.a≠0,m>1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线与x轴的公共点是(-1,0),(3,0),则这条抛物线的对称轴是______.

查看答案和解析>>

同步练习册答案