精英家教网 > 初中数学 > 题目详情
如图1,在直角坐标系中,反比例函数y=
kx
(k>0)
的图象与矩形AOBC的边AC、BC分别相交于点E、F,且点C坐标为(4,3),将△CEF沿EF对折后,C点恰好落在OB上.
(1)求k的值;
(2)如图2,在直角坐标系中,P点坐标为(2,-3),请在双曲线上找两点M、N,使四边形OPMN是平行四边形,求M、N的坐标.
精英家教网
分析:(1)作出折叠后的草图,根据反比例函数解析式表示出点EF的坐标,过点E作EH⊥OB,可得△EGH∽△GFB,根据相似三角形的对应边成比例列式整理,然后在△GFB中利用勾股定理计算即可求出k值;
(2)利用反比例函数解析式设出点M的坐标,然后把平行四边形OPMN看作是边PM沿PO方向平移得到的,根据点P与点O对应关系,由点M的坐标表示出点N的坐标,然后再代入函数解析式,计算即可求解.
解答:解:(1)设E(
k
3
,3),F(4,
k
4
),
将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,
∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,
∴∠HEG=∠FGB,
又∵∠EHG=∠GBF=90°,
∴△EGH∽△GFB(AA),
EH
GB
=
EG
GF

代入解得:GB=
3×(3-
k
4
)
(4-
k
3
)
=
9
4

在Rt△GBF中,GF2=GB2+BF2,代入得(3-
k
4
)2=(
9
4
)2+(
k
4
)2

解得k=
21
8

精英家教网

(2)平行四边形OPMN,可以看成线段PM沿PO的方向平移至ON处所得.
设M(a,
21
8a
),
∵P(2,-3)的对应点O(0,0),
∴N(a-2,
21
8a
+3),
代入反比例解析式得:(a-2)( 
21
8a
+3)=
21
8

整理得4a2-8a-7=0,
解得:a=
2+
11
2
,a=
2-
11
2
(舍去),
21
8a
=
21×2
8(2+
11
)
=
3
11
-6
4

2+
11
2
-2=
11
-2
2
3
11
-6
4
+3=
3
11
+6
4

所以M(
2+
11
2
3
11
-6
4
),N(
11
-2
2
3
11
+6
4

或M(
11
-2
2
3
11
+6
4
)N(
2+
11
2
3
11
-6
4
).
点评:本题主要考查了反比例函数图形与性质,折叠对称的性质,以及平行四边形的性质,利用平移得到平行四边形从而把平行四边形的问题转化为点的平移进行求解是解答(2)的巧妙之处,希望同学们在解题时要开动脑筋,从多方位全面的考虑问题,此题难度较大,要仔细计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•达州)如图1,在直角坐标系中,已知点A(0,2)、点B(-2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE.
(1)填空:点D的坐标为
(-1,3)
(-1,3)
,点E的坐标为
(-3,2)
(-3,2)

(2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式.
(3)若正方形和抛物线均以每秒
5
个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y轴上时,正方形和抛物线均停止运动.
①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围.
②运动停止时,求抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在Rt△OAB中,∠B=90°,AO=
12
,BA=2.把△OAB按如图方式放置在直角坐标系中,使点O与原点重合,点A落在x轴正半轴上.求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在直角坐标系中,A点的坐标为(a,0),B点的坐标为(0,b),且a、b满足
a-b
+
a2-144
a+12
=0

(1)求证:∠OAB=∠OBA.
(2)如图2,△OAB沿直线AB翻折得到△ABM,将OA绕点A旋转到AF处,连接OF,作AN平分∠MAF交OF于N点,连接BN,求∠ANB的度数.
(3)如图3,若D(0,4),EB⊥OB于B,且满足∠EAD=45°,试求线段EB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC在直角坐标系中,
(1)若把△ABC向上平移2个单位,再向左平移1个单位得到△A1B1C1,写出A1、B1、C1的坐标
(2)求出三角形ABC的面积.

查看答案和解析>>

同步练习册答案