精英家教网 > 初中数学 > 题目详情
24、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.
(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);
(2)证明:DC⊥BE.
分析:根据等腰直角三角形的性质利用SAS判定△ABE≌△ACD;因为全等三角形的对应角相等,所以∠ACD=∠ABE=45°,已知∠ACB=45°,所以可得到∠BCD=∠ACB+∠ACD=90°,即DC⊥BE.
解答:解:(1)图2中△ACD≌△ABE,
∵△ABC与△AED均为等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°.
∴∠BAC+∠CAE=∠EAD+∠CAE.
即∠BAE=∠CAD.
∴△ABE≌△ACD.

(2)证明:由(1)△ABE≌△ACD,
∴∠ACD=∠ABE=45°.
又∵∠ACB=45°,
∴∠BCD=∠ACB+∠ACD=90°.
∴DC⊥BE.
点评:此题主要考查学生对等腰三角形的性质及全等三角形的判定方法的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接CD.请找出图②中的全等三角形,并说明理由(说明:结论中不得含有未标识的字母).

查看答案和解析>>

科目:初中数学 来源: 题型:

21、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.求证:
(1)△ABE≌△ACD;
(2)DC⊥BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图每个小方格边长为1个单位,请你以AB(长为2个单位)为一边画出两个大小不同的等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)解不等式组,并把解集在数轴上表示出来.
x+3(x-2)≤2
1+3x
2
>x-1

(2)两个大小不同的等腰直角三角板按如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母).

查看答案和解析>>

科目:初中数学 来源: 题型:

两个大小不同的等腰直角三角板,如图1所示:

(1)若两个等腰直角三角板如图2放置,求证:EC⊥BD.
(2)若两个等腰直角三角板如图3放置,使B、C、D在同一条直线上,连接EC交AD于点M,你认为EC与BD是否仍然垂直?请说明理由.

查看答案和解析>>

同步练习册答案