分析 根据勾股定理求出AC,分为三种情况:①若AB=AD,②若BA=BD,则AD=2AC,③若DA=DB,求出即可.
解答 解:在Rt△ABC中,∠ACB=90°,AB=5cm,BC=4cm,由勾股定理得:AC=3cm,
由运动可知:AD=t,且△ABD时等腰三角形,
有三种情况:
①若AB=AD,则t=5;
②若BA=BD,则AD=2AC,即t=6;
③若DA=DB,则在Rt△BCD中,CD=t-3,BC=4,BD=t,
即(t-3)2+42=t2,
解得:t=$\frac{25}{6}$,
综合上述:符合要求的t值有3个,分别为5,6,$\frac{25}{6}$.
点评 本题考查了等腰三角形的判定,勾股定理,运用分类讨论思想是本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com