1£®£¨1£©ÔÚѧϰһ´Îº¯ÊýµÄͼÏóʱ£¬ÎÒÃǸù¾Ýº¯ÊýͼÏóµÄ¶¨Ò壬°´»­º¯ÊýͼÏóµÄ»ù±¾²½Ö裬»­³öÒ»´Îº¯ÊýµÄͼÏó£¬ÇëÄú°´»­º¯ÊýͼÏóµÄ»ù±¾²½Öè»­³öº¯Êýy=2x+4µÄͼÏó£®
£¨2£©Ä³ÂÌ»¯¹«Ë¾³Ðµ£Ò»¶ÎÊÐÕþ·µÄÂÌ»¯¹¤³Ì£¬Ê©¹¤Ò»¶Îʱ¼äºó£¬ÓÉÓÚÐèÒªÌáÇ°Íê³ÉÂÌ»¯ÈÎÎñ£¬¸Ã¹«Ë¾Ôö¼ÓÊ©¹¤ÈËÔ±£¬¼Ó¿ìÊ©¹¤Ëٶȣ¬ÒÑÖª¸Ã¹«Ë¾ÂÌ»¯Â·³Ìy£¨m£©ÓëÊ©¹¤µÄʱ¼äx£¨Ì죩֮¼äµÄº¯Êý¹ØϵÈçͼ£®
¢ÙÇó¼Ó¿ìÊ©¹¤ËٶȺó£¬ÂÌ»¯µÄ·³Ìy£¨cm£©ÓëÊ©¹¤Ê±¼äx£¨Ì죩֮¼äµÄº¯Êý¹Øϵʽ£»
¢ÚÒÑÖª¸Ã¹«Ë¾¹²ÓÃ16ÌìÍê³ÉÈ«²¿ÂÌ»¯ÈÎÎñ£¬Ôò¸Ã¹«Ë¾Íê³ÉÂÌ»¯µÄ×Ü·³ÌΪ3000m£®

·ÖÎö £¨1£©È¡Á½µã£¬ÀûÓÃÃèµã·¨»­³öͼÐμ´¿É£®
£¨2£©¢ÙÀûÓôý¶¨ÏµÊý·¨Éèy=kx+b£¬×ª»¯Îª·½³Ì×é½â¾öÎÊÌ⣮
¢ÚÇó³öx=16ʱµÄº¯ÊýÖµ¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©ÔÚÖ±Ïßy=2x+4ÉÏÈ¡Á½µã£¨0£¬4£©ºÍ£¨-2£¬0£©£¬¹ÊÁ½µã»­³öÖ±Ïß¼´¿É£®Í¼ÏóÈçͼËùʾ£¬


£¨2£©¢ÙÉèy=kx+bÔòÓÐ$\left\{\begin{array}{l}{6k+b=0}\\{10k+b=1200}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{k=300}\\{b=-1800}\end{array}\right.$£¬
¡ày=300x-1800£®

¢Úx=16ʱ£¬y=300¡Á16-1800=3000£¬
¡à¸Ã¹«Ë¾Íê³ÉÂÌ»¯µÄ×Ü·³ÌΪ3000m£¬
¹Ê´ð°¸Îª3000£®

µãÆÀ ±¾Ì⿼²éÒ»´Îº¯ÊýµÄÓ¦Ó㬴ý¶¨ÏµÊý·¨¡¢Ãèµã·¨»­Í¼µÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÊìÁ·ÕÆÎÕÒ»´Îº¯ÊýµÄÐÔÖÊ£¬Ñ§»á°ÑÎÊÌâת»¯Îª·½³Ì×é½â¾ö£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®×÷³öͼÖеÄÈý½ÇÐιØÓÚyÖáµÄÖá¶Ô³ÆͼÐΣ¬²¢Ð´³öµãA¹ØÓÚyÖá¶Ô³ÆµÄµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬BC=50£¬¡ÏABC=45¡ã£¬¡ÏACB=30¡ã£¬ÇóµãAµ½BCµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®£¨1£©ÒÑÖª¶àÏîʽA=2x2-xy+my-8£¬B=-nx2+xy+y+7£¬A-2BÖв»º¬ÓÐx2ÏîºÍyÏÇónm+mnµÄÖµ£®
£¨2£©Èçͼ£¬ÒÑÖªÏ߶ÎAB=20£¬CÊÇABÉϵÄÒ»µã£¬DΪCBÉϵÄÒ»µã£¬EΪDBµÄÖе㣬DE=3£®

¢ÙÈôCE=8£¬ÇóACµÄ³¤£»
¢ÚÈôCÊÇABµÄÖе㣬ÇóCDµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Çé¾°¹Û²ì£º
Èçͼ1£¬¡÷ABCÖУ¬AB=AC£¬¡ÏBAC=45¡ã£¬CD¡ÍAB£¬AE¡ÍBC£¬´¹×ã·Ö±ðΪD¡¢E£¬CDÓëAE½»ÓÚµãF£®
¢Ùд³öͼ1ÖÐËùÓеÄÈ«µÈÈý½ÇÐΡ÷ABE¡Õ¡÷ACE£¬¡÷ADF¡Õ¡÷CDB£»
¢ÚÏ߶ÎAFÓëÏ߶ÎCEµÄÊýÁ¿¹ØϵÊÇAF=2CE£®
ÎÊÌâ̽¾¿£º
Èçͼ2£¬¡÷ABCÖУ¬¡ÏBAC=45¡ã£¬AB=BC£¬ADƽ·Ö¡ÏBAC£¬AD¡ÍCD£¬´¹×ãΪD£¬ADÓëBC½»ÓÚµãE£®
ÇóÖ¤£ºAE=2CD£®
ÍØÕ¹ÑÓÉ죺
Èçͼ3£¬¡÷ABCÖУ¬¡ÏBAC=45¡ã£¬AB=BC£¬µãDÔÚACÉÏ£¬¡ÏEDC=$\frac{1}{2}$¡ÏBAC£¬DE¡ÍCE£¬´¹×ãΪE£¬DEÓëBC½»ÓÚµãF£®ÇóÖ¤£ºDF=2CE£®
ÒªÇó£ºÇëÄãд³ö¸¨ÖúÏßµÄ×÷·¨£¬²¢ÔÚͼ3Öл­³ö¸¨ÖúÏߣ¬²»ÐèÒªÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èçͼ£¬Rt¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÏA=60¡ã£¬AC=6£¬ÒÔб±ßABµÄÖеãDΪÐýתÖÐÐÄ£¬°ÑÕâ¸öÈý½ÇÐΰ´ÄæʱÕë·½ÏòÐýת90¡ãµÃµ½Rt¡÷A¡äB¡äC¡ä£¬ÔòÐýתºóÁ½¸öÖ±½ÇÈý½ÇÐÎÖصþ²¿·ÖµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®6B£®9C£®6$\sqrt{3}$D£®9$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªy=$\sqrt{{x}^{2}-4}$+$\sqrt{4-{x}^{2}}$+$\frac{{x}^{2}+x+8}{2+x}$£®Çóx$\sqrt{y}$+y$\sqrt{x}$-$\sqrt{56}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ò»¸ö¶à±ßÐÎÄڽǺͱÈËıßÐεÄÄڽǺͶà540¶È£¬¶à±ßÐÎÄڽǺÍÏàµÈ£¬¶à±ßÐÎÓм¸¸ö±ß£¨¡¡¡¡£©
A£®6B£®7C£®8D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁеãÖУ¬Ò»¶¨ÔÚ¶þ´Îº¯Êýy=x2-1ͼÏóÉϵÄÊÇ£¨¡¡¡¡£©
A£®£¨0£¬0£©B£®£¨1£¬1£©C£®£¨1£¬0£©D£®£¨0£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸