精英家教网 > 初中数学 > 题目详情
(2012•深圳)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内
OB
上一点,∠BMO=120°,则⊙C的半径长为(  )
分析:先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.
解答:解:∵四边形ABMO是圆内接四边形,∠BMO=120°,
∴∠BAO=60°,
∵AB是⊙C的直径,
∴∠AOB=90°,
∴∠ABO=90°-∠BAO=90°-60°=30°,
∵点A的坐标为(0,3),
∴OA=3,
∴AB=2OA=6,
∴⊙C的半径长=
AB
2
=3.
故选C.
点评:本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•深圳)如图,双曲线y=
kx
(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•深圳)如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•深圳)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,则另一直角边BC的长为
7
7

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•深圳)如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).
(1)求经过A、B、C三点的抛物线解析式;
(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?

查看答案和解析>>

同步练习册答案