精英家教网 > 初中数学 > 题目详情
(2013•台湾)如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?(  )
分析:根据在直角三角形中,斜边上的中线等于斜边的一半着一性质可求出AB的长,再根据勾股定理即可求出BE的长.
解答:解:∵BE⊥AC,
∴△AEB是直角三角形,
∵D为AB中点,DE=10,
∴AB=20,
∵AE=16,
∴BE=
AB2-AE2
=12,
故选C.
点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•台湾)如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点.若∠PBC=70°,则∠MPC的度数为何?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台湾)如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台湾)如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台湾)如图,
AB
是半圆,O为AB中点,C、D两点在
AB
上,且AD∥OC,连接BC、BD.若
CD
=62°,则
AD
的度数为何?(  )

查看答案和解析>>

同步练习册答案