精英家教网 > 初中数学 > 题目详情

如图,记抛物线的图象与正半轴的交点为A,将线段OA分成n等份,设分点分别为P1,P2,…,Pn-1,过每个分点作轴的垂线,分别与抛物线交于点Q1,Q2,…,Qn-1,再记直角三角形OP1Q1,P1P2Q2,…的面积分别为S1,S2,…,这样就有,…;记W=S1+S2+…+Sn-1,当n越来越大时,你猜想W最接近的常数是(   )

A.                     B.                C.                              D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线b1
(1)平移抛物线b1,使平移后的抛物线经过点A,但不经过点B.写出平移后的一个抛物线的函数关系式:
 
 (任写一个即可);
(2)平移抛物线b1,使平移后的抛物线经过A,B两点,记为抛物线b2,如图2.求抛物线b2的函数关系式;
(3)设抛物线b2的顶点为C,k为y轴上一点.若S△ABK=S△ABC,如图3,求点K的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:
 
(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;
(3)设抛物线l2的顶点为C,K为y轴上一点.若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,点A的坐标为(1,-2),点B的坐标为(3,-1),二次函数y=-x2的图象为l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的抛物线的一个解析式(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A、B两点,记抛物线为l2,如图2,求抛物线l2的函数解析式及顶点C的坐标;
(3)设P为y轴上一点,且S△ABC=S△ABP,求点P的坐标;
(4)请在图2上用尺规作图的方式探究抛物线l2上是否存在点Q,使△QAB为等腰三角形?若存在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(40):2.3 二次函数的应用(解析版) 题型:解答题

如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;
(3)设抛物线l2的顶点为C,K为y轴上一点.若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

同步练习册答案