精英家教网 > 初中数学 > 题目详情

如图 所示,抛物线y=x2-4x+3与x轴分别交于A、B两点,交y轴于点C.
(1)求线段AC的长;
(2)求tan∠CBA的值;
(3)连接AC,试问在x轴左侧否存在点Q,使得以C、O、Q为顶点的三角形和△OAC相似?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.

解:(1)令y=x2-4x+3=0,
解得x=1或3,
∴A点的坐标为(1,0),B点的坐标为(3,0),
令x=0得y=3,
∴C点的坐标为(0,3),
∴AC===

(2)∵A点的坐标为(1,0),C点的坐标为(0,3),
∴OA=3,OC=3,
∴tan∠CBA===1;

(3)设Q点的坐标为(x,0),
∵Q点在x轴左侧否,
∴OQ=-x,
当△QOC∽△AOC时,

即:
∴x=-3,
∴此时Q点的坐标为(-3,0);
当△CQO∽△ACO

即:
解得x=-9,
∴此时Q点的坐标为(-9,0)
∴在Y轴左侧否存在点Q(-3,0)和(-9,0),使得以C、O、Q为顶点的三角形和△OAC相似.
分析:(1)分别令x=0和y=0求得A点的坐标为(1,0),B点的坐标为(3,0),C点的坐标为(0,3),据此可以求得AC的长;
(2)线段OC的长除以线段OB的长即为tan∠CBA的值;
(3)设Q点的坐标为(x,0),利用以C、O、Q为顶点的三角形和△OAC相似即可得到有关x的方程,求得x的值即可求得Q点的坐标.
点评:本题考查了二次函数的综合知识,题目中还涉及到了相似三角形的判定及性质,是一道比较不错的综合性题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是(  )
A、b=0B、S△ABE=c2C、ac=-1D、a+c=0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河源二模)已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).
(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标;
(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•槐荫区一模)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(-1,0)、(0,-3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示,抛物线对应的函数解析表达式只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示的抛物线是把y=-x2经过平移而得到的.这时抛物线过原点O和x轴正向上一点A,顶点为P;
①当∠OPA=90°时,求抛物线的顶点P的坐标及解析表达式;
②求如图所示的抛物线对应的二次函数在-
1
2
≤x≤
1
2
时的最大值和最小值.

查看答案和解析>>

同步练习册答案