精英家教网 > 初中数学 > 题目详情
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1﹒x2.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|=
参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值。
解:(1)当△ABC为直角三角形时,过C作CE⊥AB于E,则AB=2CE.
∵抛物线与x轴有两个交点,△=b2-4ac>0,则|b2-4ac|=b2-4ac.
∵a>0,∴AB=
又∵CE=||=



∵b2-4ac>0,∴b2-4ac=4;
(2)当△ABC为等边三角形时,由(1)可知CE=

∵b2-4ac>0,
∴b2-4ac=12.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

定理:若x1、x2是关于x的一元二次方程x2+mx+n=0的两实根,则有x1+x2=-m,x1x2=n.请用这一定理解决问题:已知x1、x2是关于x的一元二次方程x2-2(k+1)x+k2+2=0的两实根,且(x1+1)(x2+1)=8,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•兰州一模)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
,把它们称为一元二次方程根与系数关系定理,请利用此定理解答一下问题:
已知x1,x2是一员二次方程(m-3)x2+2mx+m=0的两个实数根.
(1)是否存在实数m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,请你说明理由;
(2)若|x1-x2|=
3
,求m的值和此时方程的两根.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读,再填空解答:
方程x2-3x-4=0的根为x1=-1,x2=4,x1+x2=3,x1x2=-4;
方程3x2+10x+8=0的根为x1=-2,x2=-
4
3
x1+x2=-
10
3
x1x2=
8
3

(1)方程2x2+x-3=0的根是x1=
-
3
2
-
3
2
,x2=
1
1
,x1+x2=
-
1
2
-
1
2
,x1x2=
-
3
2
-
3
2

(2)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根,那么x1+x2,x1x2与系数a、b、c的关系是:x1+x2=
-
b
a
-
b
a
,x1x2=
c
a
c
a

(3)当你轻松解决以上问题时,试一试下面这个问题:甲、乙两同学解方程x2+px+q=0时,甲看错了一次项系数,得根2和7,乙看错了常数项,得根1和-10,则原方程中的p、q到底是多少?你能写出原来的方程吗?

查看答案和解析>>

科目:初中数学 来源:2010年北京市大兴区中考数学一模试卷(解析版) 题型:解答题

(2010•大兴区一模)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:.我们把它们称为根与系数关系定理.
如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:
AB=|x1-x2|====
请你参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为等腰直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,b2-4ac=______;
(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?

查看答案和解析>>

科目:初中数学 来源:2012-2013学年福建省漳州市平和县九年级(上)期中数学试卷(解析版) 题型:解答题

先阅读,再填空解答:
方程x2-3x-4=0的根为x1=-1,x2=4,x1+x2=3,x1x2=-4;
方程3x2+10x+8=0的根为
(1)方程2x2+x-3=0的根是x1=______,x2=______,x1+x2=______,x1x2=______.
(2)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根,那么x1+x2,x1x2与系数a、b、c的关系是:x1+x2=______,x1x2=______.
(3)当你轻松解决以上问题时,试一试下面这个问题:甲、乙两同学解方程x2+px+q=0时,甲看错了一次项系数,得根2和7,乙看错了常数项,得根1和-10,则原方程中的p、q到底是多少?你能写出原来的方程吗?

查看答案和解析>>

同步练习册答案