精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.

(1)填写下列各点的坐标:A4
2
2
0
0
),A8
4
4
0
0
);
(2)写出点A4n的坐标(n是正整数);
(3)指出蚂蚁从点A2012到点A2013的移动方向.
分析:(1)观察图形可知,A4,A8都在x轴上,求出OA4、OA8的长度,然后写出坐标即可;
(2)根据(1)中规律写出点A4n的坐标即可;
(3)根据2012是4的倍数,可知从点A2012到点A2013的移动方向与从点O到A1的方向一致.
解答:解:(1)由图可知,A4,A8都在x轴上,
∵小蚂蚁每次移动1个单位,
∴OA4=2,OA8=4,
∴A4(2,0),A8(4,0);
故答案为:2,0;4,0;

(2)根据(1)OA4n=4n÷2=2n,
∴点A4n的坐标(2n,0);

(3)∵2012÷4=503,
∴2012是4的倍数,
∴从点A2012到点A2013的移动方向与从点O到A1的方向一致,为↑.
点评:本题是对点的变化规律的考查,比较简单,仔细观察图形,确定出A4n都在x轴上是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案