精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABE△CDE都是等腰直角三角形,∠AEB∠DEC90°,连接ADACBCBD,若ADACAB,则下列结论:①AE垂直平分CD②AC平分∠BAD③△ABD是等边三角形,④∠BCD的度数为150°,其中正确的个数是(

A.1B.2C.3D.4

【答案】D

【解析】

首先证明AECBED,得到AC=BD=AB=AD,得到△ABD是等边三角形,③正确;根据 ABE CDE都是等腰直角三角形,得到∠CAB=∠CAD30°∠CAE=∠EAD15°得到①②正确; ABCCAD为等腰三角形,顶角都为30°,得到∠ACB=∠ABC=75°,∠ACD=∠ADC=75°,得出∠BCD的度数为150°④正确

解:∵ ABE CDE都是等腰直角三角形

AE=BE, DE=CE

∵∠AEB=∠DEC90°

∴∠AEC=∠DEB

AECBED

AC=BD

ADACAB

ADBDAB

∴② ABD是等边三角形正确

∴∠ABD=∠BAD=∠ADB=60°

ABE CDE都是等腰直角三角形

∴∠EAB=∠ABE=45°

∴∠CAB30°,∠CAE=∠EAD15°

AE为∠CAD的角平分线

ABD为等腰三角形

∴①AE垂直平分CD正确

∴∠CAD30°

∴②AC平分∠BAD正确

ABC为等腰三角形,顶角∠BAC30°

∴∠ACB=∠ABC=75°

同理∠ACD=∠ADC=75°

∴④∠BCD的度数为150°正确.

故选D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为,则之间的关系是(

A.B.C.D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校数学兴趣小组进行户外兴趣活动:测量河中桥墩露出水面部分AB的高度.如图所示,在点C处测得∠BCA=45°.在坡比为i=1:3,高度DE=15米的小山坡顶E处测得桥墩顶部B的仰角为20°,则桥墩露出水面部分AB的高度约为(精确到1米,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(  )

A. 34 B. 48 C. 49 D. 64

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为使中华传统文化教育更具有实效性,军宁中学开展以我最喜爱的传统文化种类为主题的调查活动,围绕在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:

(1)本次调查共抽取了多少名学生?

(2)通过计算补全条形统计图;

(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】夷陵区园林处为了对一段公路进行绿化,计划购买A、B两种风景树,已知若用8000元买A种树要比买B种树多买20棵,A、B两种树的相关信息如下表:

项目品种

单价(元/棵)

成活率

A

m

91%

B

100

97%

(1)求表中m的值;

(2)预计对这段公路的绿化需购1000棵这样的风景树.若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A、B两种树各多少棵?最低费用为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从A地到B地的公路需要经过C地,根据规划,将在AB两地之间修建一条笔直的公路.已知AC=10千米,CAB=34°,∠CBA=45°,求改直后公路AB的长(结果精确到0.1千米)

(参考数据:sin34°≈0.559,cos34°≈0.829,tan34°≈0.675)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,E为CD的中点,连接AE、BE,BEAE,延长AE交BC的延长线于点F. 已知AD=2cm,BC=5cm.

(1)求证:FC=AD;

2求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣2x+m的图象与x轴y轴分别交于点A,B,与正比例函数y=x的图象交于点P(2,n)

(1)求点A的坐标;

(2)求△POB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AD是高,AE、BF是角平分线,它们相交于点O,CAB=500C=600,求DAE和BOA的度数。

查看答案和解析>>

同步练习册答案