如图,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE
求证:AH=2BD
详见解析
【解析】
试题分析:由等腰三角形的底边上的垂线与中线重合的性质求得BC=2BD,根据直角三角形的两个锐角互余的特性求知∠1+∠C=90°;又由已知条件AE⊥AC知∠2+∠C=90°,所以根据等量代换求得∠1=∠2;然后由三角形全等的判定定理SAS证明△AEH≌△BEC,再根据全等三角形的对应边相等及等量代换求得AH=2BD
试题解析:∵AD是高,BE是高
∴∠EBC+∠C=∠CAD+∠C=90°
∴∠EBC=∠CAD 2分
又∵AE=BE
∠AEH=∠BEC
∴△AEH△BEC(ASA) 2分
∴AH =BC
∵AB=AC,AD是高
∴BC=2BD
∴AH =2BD 2分
考点:1 等腰三角形的性质;2 全等三角形的判定与性质
科目:初中数学 来源: 题型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com