【题目】如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.
(1)直接写出B点的坐标;
(2)求该二次函数的解析式;
(3)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.
【答案】(1)(0,﹣4);(2)y=x2﹣x﹣4;(3)存在,(,-)
【解析】
(1)利用待定系数法求抛物线的解析式,再确定B(0,﹣4);
(2)利用(1)可以得到答案;
(3)连接OP,如图,设P(m,m2﹣m﹣4)(0<m<8),利用S△PBD=S△POD+S△POB﹣S△BOD=×3×(﹣m2+m+4)+×4×m﹣×3×4=×5×4得到关于m的方程,然后解方程求出m即可得到P点坐标.
解:(1)把A(﹣2,0)和C(8,0)代入y=ax2+bx﹣4,得 ,
解得 ,
∴抛物线的解析式为y=x2﹣x﹣4;
当x=0时,y=x2﹣x﹣4=﹣4,则B(0,﹣4),
(2)由(1)知,抛物线的解析式为y=x2﹣x﹣4;
(3)存在.
∵y=x2﹣x﹣4=(x﹣3)2﹣,
∴抛物线的对称轴为直线x=3,
∴D(3,0).
由(1)知, `B(0,﹣4).
连接OP,如图,设P(m,m2﹣m﹣4)(0<m<8),
∵S△PBD=S△POD+S△POB﹣S△BOD,S△ABD=×5×4=10,
而△BDP的面积恰好等于△ADB的面积,
∴×3×(﹣m2+m+4)+×4×m﹣×3×4=×5×4,
整理得3m2﹣34m+80=0,解得m1=,m2=8(舍去),
∴P点坐标为(,-).
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣x+m=0有两个实数根.
(1)若m为正整数,求此方程的根.
(2)设此方程的一个实数根为b,若y=4b2﹣4b﹣3m+3,求y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若PC=2,求⊙O的半径及线段PB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】丰都县某中学为培养学生综合实践能力,开展了一系列综合实践活动,有一次财商训练活动中,小明同学准备去集市批发两种商品用于活动中交易.预先了解到A、B两种商品的价格之和为27元,小明计划购买B商品的数量比A商品的数量多2件,但一共不超过25件,且每样不少于3件,但小明去购买时发现A商品正打九折销售,而B商品的价格提高了20%,小明决定将A、B产品的购买数量对调,这样实际花费只比计划多8元,已知价格和购买数量均为整数,则小明购买两种商品实际花费为_____元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.
(1)求k的值.
(2)把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,点分别是上的点,将沿折叠,使得点落在上的处.
(1)设的长可用含的代数式表示为________;
(2)若点是的中点,求的长;
(3)若,判断四边形的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O内切于正方形ABCD,边AD、CD分别与⊙O切于点E、F,点M、N分别在线段DE、DF上,且MN与⊙O相切,若△MBN的面积为8,则⊙O的半径为( )
A.B.2C.D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com