分析 (1)由平行线的性质知∠O=180°-∠B=80°,结合∠A=100°得∠A+∠O=180°,即可得证;
(2)由角平分线的性质可得;
(3)由BC∥OA知∠OCB=∠AOC,结合∠FOC=∠AOC知∠FOC=∠OCB,从而得∠OFB=2∠OCB;
解答 解:(1)∵BC∥OA,
∴∠B+∠O=180°,
∴∠O=180°-∠B=80°,
而∠A=100°,
∴∠A+∠O=180°,
∴OB∥AC;
(2)∵OE平分∠BOF,
∴∠BOE=∠FOE=$\frac{1}{2}$∠BOF,
而∠FOC=∠AOC=$\frac{1}{2}$∠AOF,
∴∠EOC=∠EOF+∠COF=$\frac{1}{2}$∠AOB=$\frac{1}{2}$×80°=40°;
(3)不改变,
∵BC∥OA,
∴∠OCB=∠AOC,
∵∠FOC=∠AOC,
∴∠FOC=∠OCB,
∴∠OFB=∠FOC+∠OCB=2∠OCB,即∠OCB:∠OFB的值为1:2.
点评 本题主要考查角平分线的性质和平行线的判定与性质及三角形外角性质,熟练掌握角平分线的性质和平行线的判定与性质是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 14cm | B. | 16cm | C. | 14cm或16cm | D. | 以上都不对 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a=13,b=12,c=5 | B. | a=1.2,b=1.6,c=2 | C. | a=$\frac{1}{3}$,b=$\frac{1}{4}$,c=$\frac{1}{5}$ | D. | a=$\frac{4}{3}$,b=$\frac{5}{3}$,c=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com