【题目】已知:如图,AB∥CD,E是AB的中点,∠CEA=∠DEB.
(1)试判断△CED的形状并说明理由;
(2)若AC=5,求BD的长.
【答案】
(1)解:△CED是等腰三角形,
∵AB∥CD,
∴∠AEC=∠ECD,∠BED=∠EDC,
∵∠CEA=∠DEB,
∴∠ECD=∠EDC,
∴△CED是等腰三角形
(2)解:∵E是AB的中点,
∴AE=BE,
在△AEC与△BED中,
,
∴△AEC≌△BED,
∴BD=AC=5.
【解析】(1)根据平行线的性质得到∠AEC=∠ECD,∠BED=∠EDC,等量代换得到∠ECD=∠EDC,即可得到结论。
(2)由E是AB的中点,得到AE=BE,证出△AEC≌△BED,根据全等三角形的性质即可得到结论。
【考点精析】认真审题,首先需要了解平行线的性质(两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补).
科目:初中数学 来源: 题型:
【题目】下列命题的逆命题一定成立的是 ( )
①对顶角相等; ②同位角相等,两直线平行;③全等三角形的周长相等;④面积相等的两个三角形全等
A. ①②③ B. ①④ C. ②④ D. ②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列条件中,不能证明△ABC≌△DCB的是( )
A.AB=CD,AC=BD
B.AB=CD,∠ABC=∠BCD
C.∠ABC=∠DCB,∠A=∠D
D.AB=CD,∠A=∠D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以下说法正确的是( )
A. 各边都相等的多边形是正多边形
B. 到线段两个端点距离相等的点在线段的垂直平分线上
C. 角的平分线就是角的对称轴
D. 形状相同的两个三角形是全等三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com