精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD和正方形CEFG边长分别为ab,正方形CEFG绕点C旋转,给出下列结论:①BEDG;②BEDG;③DE2+BG22a2+b2,其中正确结论是_____(填序号)

【答案】①②

【解析】

由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BEDG,利用全等三角形对应角相等得到∠1=∠2,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.

如图,设BEDG交于O

∵四边形ABCDEFGC都为正方形,

BCCDCECG,∠BCD=∠ECG90°

∴∠BCE+DCE=∠ECG+DCE90°+DCE,即∠BCE=∠DCG

在△BCE和△DCG中,

∴△BCE≌△DCG(SAS)

∴∠1=∠2BEDG,故①正确,

∵∠3=4,∠BCD=90°

∴∠1+4=∠3+290°

∴∠BOD90°

BEDG;故②正确;

如图,连接BDEG

DO2+BO2BD2BC2+CD22a2EO2+OG2EG2CG2+CE22b2

BG2+DE2OG2+BO2+EO2+ DO22a2+2b2,故③错误.

故答案为:①②.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=3AC=4BC=5P为边BC上一动点,PEABEPFACFMEF中点,则AM的最小值为 ( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,城市建设部门计划在城市广场的一块长方形空地上修建一个面积为1500的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为60,宽为40

1)求通道的宽度;

2)某公司希望用60万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以48.6万元达成一致,若两次降价的百分率相同,求每次降价的百分率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,△ABC中,∠ACB=90°AC=BC=8,点A在半径为5的⊙O上,点O在直线l上.

(1)如图①,若⊙O经过点C,交BC于点D,求CD的长.

(2)(1)的条件下,若BC边交l于点EOE=2,求BE的长.

(3)如图②,若直线l还经过点CBC是⊙O 的切线,F为切点,则CF的长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b与反比例函数x>0)的图象交于点A(a3)B(31).

1)求一次函数的解析式.

2)观察图象,写出反比例函数值小于一次函数值时x的取值范围.

3)点P是线段AB上一点,过点PPDx轴于点D,交反比例函数图象于点Q,连接OPOQ,若POQ的面积为,求P点的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B90°,AB12mmBC24mm,动点P从点A开始沿边ABB2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BCC4mm/s的速度移动(不与点C重合).如果PQ分别从AB同时出发,设运动的时间为ts,四边形APQC的面积为ymm2

1yt之间的函数关系式;

2)求自变量t的取值范围;

3)四边形APQC的面积能否等于172mm2.若能,求出运动的时间;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正比例函数y1k1x的图象与反比例函数y2x0)的图象相交于点A2),点B是反比例函数图象上一点,它的横坐标是3,连接OBAB,则△AOB的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某经销商销售一种产品,这种产品的成本价为10/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:

1)求yx之间的函数关系式,并写出自变量x的取值范围;

2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?

3)该经销商想要每天获得150元的销售利润,销售价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明大学毕业回家乡创业第一期培植盆景与花卉各50盆售后统计盆景的平均每盆利润是160花卉的平均每盆利润是19调研发现:

①盆景每增加1盆景的平均每盆利润减少2;每减少1盆景的平均每盆利润增加2;②花卉的平均每盆利润始终不变.

小明计划第二期培植盆景与花卉共100设培植的盆景比第一期增加x第二期盆景与花卉售完后的利润分别为W1,W2(单位元)

(1)用含x的代数式分别表示W1,W2;

(2)当x取何值时第二期培植的盆景与花卉售完后获得的总利润W最大最大总利润是多少?

查看答案和解析>>

同步练习册答案