分析 先根据三角形内角和定理,计算出∠B,再利用角平分线的定义,得到∠BAE=$\frac{1}{2}$∠BAC,由AD是△ABC的高,得到∠BAD=90°-∠B,然后根据∠DAE=∠BAE-∠BAD求解.
解答 解:∵∠BAC=80°,∠C=40°,
∴∠B=180°-∠BAC-∠C=60°,
∵AE是△ABC的角平分线,
∴∠BAE=∠CAE=$\frac{1}{2}$∠BAC=40°,
∵AD是△ABC的高,
∴∠ADB=90°,
∴∠BAD=90°-∠B=90°-60°=30°,
∴∠DAE=∠BAE-∠BAD=40°-30°=10°.
点评 本题主要考查了三角形高线、角平分线以及三角形内角和定理的运用,解题时注意:三角形内角和是180°.本题也可以根据∠DAE=∠CAD-∠CAE求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com