精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠B=60°,∠C=75°,AC=3 ,求AB的长.

【答案】解:过点C作CD⊥AB于点D,
∵∠B=60°,∠C=75°,
∴∠A=45°,
在△ADC中,AC=3
∵sinA=
∴AD=sin45°×3 =3=CD,
在△BDC中,∠DCB=30°,
∵ctgB=
∴BD=cot60°×3=
∴AB= +3,

【解析】过点C作CD⊥AB于点D,先根据三角形内角和定理计算出∠A=45°,在Rt△ADC中,利用∠A的正弦可计算出CD,进而求得AD,然后在Rt△BDC中,利用∠B的余切可计算出BD,进而就可求得AB.
【考点精析】掌握三角形的内角和外角是解答本题的根本,需要知道三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知∠MON=30°,点A1A2A3在射线ON上,点B1B2B3在射线OM上,△A1B1A2△A2B2A3△A3B3A4均为等边三角形,若OA1=2,则△A5B5A6的边长为( )

A. 8 B. 16 C. 24 D. 32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)(3x-2y)2-2x(3x-2y);

(2)(2a+1)(4a2-2a+1);

(3)先化简再求值

(-x-2y)(x-2y)-(2y-x)2+(2x3-4x2y)÷2x, x=-3,.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数的图象经过点P(﹣1,2),则此反比例函数的解析式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AC=BC=2C=90°ADABC的角平分线,DEAB,垂足为EAD的垂直平分线交AB于点E,则DEF的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为了落实中央的强基惠民工程计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成若乙队单独施工则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15那么余下的工程由甲队单独完成还需5

1)这项工程的规定时间是多少天?

2)已知甲队每天的施工费用为6500乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)

(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;

(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?

(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察图形

如图1,△ABCAB=AC,∠BAC=45°,CDABAEBC垂足分别为DECDAE交于点F

写出图1中所有的全等三角形_________________;

线段AF与线段CE的数量关系是_________________;

(2)问题探究

如图2,△ABC,∠BAC=45°,AB=BCAD平分BACADCD垂足为DADBC交于点E

求证AE=2CD

(3)拓展延伸

如图3,△ABC,∠BAC=45°,AB=BCDAC,∠EDC=BACDECE垂足为EDEBC交于点F

求证DF=2CE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC的三边长分别为abc,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判断△ABC是直角三角形的个数有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

同步练习册答案