分析 先根据等边三角形的性质和锐角三角函数(或勾股定理)求出BD的长,再判断出△BDE是等腰三角形即可.
解答 解:∵△ABC是边长为2的等边三角形,BD是AC边上的中线,
∴∠ACB=60°,BD⊥AC,BD平分∠ABC,∠DBE=$\frac{1}{2}$∠ABC=30°,
∴BD=BC•sin60°=2×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$,
∵CD=CE,
∴∠CDE=∠E.
∵∠ACB=60°,且∠ACB为△CDE的外角,
∴∠CDE+∠E=60°,
∴∠CDE=∠E=30°,
∴∠DBE=∠DEB=30°,
∴BD=DE=$\sqrt{3}$.
故答案为:$\sqrt{3}$
点评 此题考查的是等边三角形的性质,三角形的内角和和特殊三角函数值等问题,利用等边三角形“三线合一”的性质是解答此题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (2,0) | B. | (2.5,0) | C. | (4,0) | D. | (4.5,0) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a=5,b=-6 | B. | a=5,b=6 | C. | a=1,b=6 | D. | a=1,b=-6 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
甲市 | 5 | 15 | 20 | 20 | 60 | 140 | 185 | 200 | 60 | 35 | 15 | 10 |
乙市 | 25 | 40 | 55 | 140 | 300 | 430 | 310 | 410 | 320 | 120 | 35 | 25 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com