精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,AB=5,BC=12,⊙O1和⊙O2分别是△ABC和△ADC的内切圆,则O1O2=   
【答案】分析:本题的解题思想是通过构造一直角三角形,把线段O1O2放到一直角三角形中,再利用勾股定理就可解得.
解答:解:∵矩形ABCD中,AB=5,BC=12;
∴AC=13,△ABC≌△CDA,则⊙O1和⊙O2的半径相等.
如图,过O1作AB、BC的垂线分别交AB、BC于N、E,过O2作BC、CD、AD的垂线分别交BC、CD、AD于F、G、H;
∵∠B=90°,
∴四边形O1NBE是正方形;
设圆的半径为r,根据切线长定理5-r+12-r=13,解得r=2,
∴BE=BN=2,
同理DG=HD=CF=2,
∴CG=FO2=3,EF=12-4=8;
过O1作O1M⊥FO2于M,则O1M=EF=8,FM=BN=2,
∴O2M=1,
在Rt△O1O2M中,O1O2==
点评:本题主要考查了三角形的内切圆的性质及切线长定理,作辅助线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案