精英家教网 > 初中数学 > 题目详情
如图,等边三角形ABC中,D、E分别在AB、BC边上,且AD=BE,AE与CD交于点F,AG⊥CD于点G.下列结论:①AE=CD;②∠AFC=120°;③△ADF是正三角形;④
FG
AF
=
1
2
.其中正确的结论是
①②④
①②④
(填所有正确答案的序号).
分析:根据等边三角形的性质可得AB=AC,∠BAC=∠B=60°,然后利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应边相等可得AE=CD,判定①正确;根据全等三角形对应角相等可得∠ACD=∠BCE,求出∠CAF+∠ACD=60°,然后利用三角形的内角和定理求出∠AFC=120°,判定②正确;求出∠FAD<60°,判定△ADF是正三角形错误;求出∠AFG=60°,再求出∠FAG=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得FG=
1
2
AF,然后得到④正确.
解答:解:在等边△ABC中,AB=AC,∠BAC=∠B=60°,
∵在△ABE和△CAD中,
AB=AC
∠BAC=∠B=60°
AD=BE

∴△ABE≌△CAD(SAS),
∴AE=CD,故①正确;

∠ACD=∠BCE,
∴∠CAF+∠ACD=∠CAF+∠BCE=∠BAC=60°,
在△ACF中,∠AFC=180°-(∠CAF+∠ACD)=180°-60°=120°,故②正确;

∵∠FAD<∠BAC,∠BAC=60°,
∴∠FAD≠60°,
∴△ADF不是正三角形,故③错误;

∵∠AFG=180°-∠AFC=180°-120°=60°,AG⊥CD,
∴∠FAG=90°-60°=30°,
∴FG=
1
2
AF,
FG
AF
=
1
2
,故④正确,
综上所述,正确的有①②④.
故答案为:①②④.
点评:本题考查了等边三角形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等边三角形和全等三角形的判定与性质,并准确识图是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,等边三角形AOB的顶点A在反比例函数y=
3
x
(x>0)的图象上,点B在x轴上.
(1)求点B的坐标;
(2)求直线AB的函数表示式;
(3)在y轴上是否存在点P,使△OAP是等腰三角形?若存在,直接把符合条件的点P的坐标都写出来;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则
FG
AF
=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,等边三角形ABC的边长为6,点D,E分别在边AB,AC上,且AD=AE=2.若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设点F运动的时间为t秒.当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O.
(1)设△EGA的面积为S,写出S与t的函数关系式;
(2)当t为何值时,AB⊥GH.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等边三角形ABC的边长为a,若D、E、F、G分别为AB、AC、CD、BF的中点,则△BEG的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:013

已知:如图,在等边三角形AB,AD=BE=CF,D,E,F不是各边的中点,AE,BF,CD分别交于P,M,N在每一组全等三角形中,有三个三角形全等,在图中全等三角形的组数是

[    ]

A.5   B.4    C.3   D.2

 

查看答案和解析>>

同步练习册答案