精英家教网 > 初中数学 > 题目详情
8.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.
(1)几秒后ON与OC重合?
(2)如图2,经过t秒后,OM恰好平分∠BOC,求此时t的值.
(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC平分∠MOB?请画图并说明理由.

分析 (1)用角的度数除以转动速度即可得;
(2)根据∠AOC=30°、OM恰好平分∠BOC知∠BOM=75°,进而可知旋转的度数,结合旋转速度可得时间t;
(3)分别根据转动速度关系和OC平分∠MOB画图即可.

解答 解:(1)∵30÷3=10,
∴10秒后ON与OC重合;

(2)∵∠AON+∠BOM=90°,∠COM=∠MOB,
∵∠AOC=30°,
∴∠BOC=2∠COM=150°,
∴∠COM=75°,
∴∠CON=15°,
∴∠AON=∠AOC-∠CON=30°-15°=15°,
解得:t=15°÷3°=5秒;

(3)∵∠AON+∠BOM=90°,∠BOC=∠COM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON为3t,∠AOC为30°+6t,
∴∠COM为$\frac{1}{2}$(90°-3t),
∵∠BOM+∠AON=90°,
可得:180°-(30°+6t)=$\frac{1}{2}$(90°-3t),
解得:t=$\frac{70}{3}$秒;
如图:

点评 此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.(1)求值:|$\sqrt{3}$-2|+(-$\frac{1}{3}$)-1-(2016-π)0+2cos30°
(2)解方程:x2-2x-3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:
(1)($\sqrt{12}$+$\sqrt{1\frac{1}{3}}$)×$\sqrt{3}$
(2)$\sqrt{48}$-$\sqrt{54}$÷$\sqrt{2}$+(3-$\sqrt{3}$)(3+$\sqrt{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如果$\frac{|a|}{a}$+$\frac{|b|}{b}$+$\frac{|c|}{c}$=-1,那么$\frac{ab}{|ab|}$+$\frac{bc}{|bc|}$+$\frac{ac}{|ac|}$+$\frac{abc}{|abc|}$的值为(  )
A.-2B.-1C.0D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.小马虎同学在计算某个多边形的内角和时得到1840°,老师说他算错了,于是小马虎认真地检查了一遍
(1)若他检查发现其中一个内角多算了一次,求这个多边形的边数是多少?
(2)若他检查发现漏算了一个内角,求漏算的那个内角是多少度?这个多边形是几边形?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.当三角形中有一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中β称为“特征角”,若一个“特征三角形”是锐角三角形,则其“特征角”β的大小范围是30°<β<45°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是(  )
A.2sinαB.2cosαC.$\frac{1}{sinα}$D.$\frac{1}{2cosα}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知下列等式:
①32-12=8,
②52-32=16,
③72-52=24,

(1)请仔细观察,写出第4个式子;
(2)根据以上式子的规律,写出第n个式子,并用所学知识说明第n个等式成立;
(3)利用(2)中发现的规律计算:8+16+24+…+792+800.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知a、b都是不为0的常数,如果多项式(x+a)(x+b)的乘积中不含x项,则有(  )
A.a-b=0B.ab=1C.a+b=0D.ab=-1

查看答案和解析>>

同步练习册答案