精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系内,已知点A06)、点B80),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点PQ移动的时间为t秒.

1求直线AB的解析式;

2t为何值时,△APQ与△AOB相似?

3t为何值时,△APQ的面积为个平方单位?

【答案】123 310

【解析】

试题分析:(1)直线AB的解析式y=kx+b; 已知点A06)、点B80,;解得,所以直线AB的解析式

(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-10); 6

(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-10),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;

由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-10

设抛物线的解析式为:y=a(x-18

抛物线过点(-10

0=a(-118

解得:a=2

抛物线的解析式为y=2(x-18

即:y=24x-6 12

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】从﹣4,﹣3,﹣2,﹣101345这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组至少有四个整数解,且关于x的分式方程1有非负整数解的概率是(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示的两条抛物线的解析式分别是y1=-ax2ax1y2ax2ax1(其中a为常数,且a0)

1)请写出三条与上述抛物线有关的不同类型的结论;

2)当a时,设y1=-ax2ax1x轴分别交于MN两点(MN的左边)y2ax2ax1x轴分别交于EF两点(EF的左边),观察MNEF四点坐标,请写出一个你所得到的正确结论,并说明理由;

3)设上述两条抛物线相交于AB两点,直线ll1l2都垂直于x轴,l1l2分别经过AB两点,l在直线l1l2之间,且l与两条抛物线分别交于CD两点,求线段CD的最大值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数的图象与轴交于点,与反比例函数在第一象限内的图象交于点,且点的横坐标为.过点轴交反比例函数的图象于点,连接

1)求反比例函数的表达式.

2)求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使ABAC,连接AC,过点DDEAC,垂足为 E

1)求证:DCBD

2)求证:DE为⊙O的切线;

3)若AB12AD6,连接OD,求扇形BOD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34cos20°≈0.94tan20°≈0.36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰RtABC和等腰RtAED中,∠ACB=∠AED=90°,且AD=AC

1)发现:如图1,当点EAB上且点C和点D重合时,若点MN分别是DBEC的中点,则MNEC的位置关系是   MNEC的数量关系是   

2)探究:若把(1)小题中的△AED绕点A旋转一定角度,如图2所示,连接BDEC,并连接DBEC的中点MN,则MNEC的位置关系和数量关系仍然能成立吗?若成立,请以逆时针旋转45°得到的图形(图3)为例给予证明位置关系成立,以顺时针旋转45°得到的图形(图4)为例给予证明数量关系成立,若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.

(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;

(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?

(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙OACBCCD是⊙O的直径,与AB相交于点G,过点DEFAB,分别交CACB的延长线于点EF,连接BD.

1)求证:EF是⊙O的切线;

2)求证:BD2ACBF.

查看答案和解析>>

同步练习册答案