精英家教网 > 初中数学 > 题目详情

【题目】在不透明的布袋中装有1个白球,2个红球,它们除颜色外其余完全相同.
(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个红球的概率;
(2)若在布袋中再添加x个白球,充分搅匀,从中摸出一个球,使摸到白球的概率为 ,求添加的白球个数x.

【答案】
(1)解:列表如下:

﹣﹣﹣

(红,白)

(红,白)

(白,红)

﹣﹣﹣

(红,红)

(白,红)

(红,红)

﹣﹣﹣

所有等可能的情况有6种,其中恰好为两个红球的情况有2种,

则P(两个红球)=


(2)解:根据题意得: =

解得:x=2,

经检验是分式方程的解,

则添加白球的个数x=2


【解析】(1)列表得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率;(2)根据概率公式列出关于x的方程,求出方程的解即可得到结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=4 ,则图中阴影部分的面积为(
A.π+1
B.π+2
C.2π+2
D.4π+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点Ax轴负半轴上一点,点Bx轴正半轴上一点,,其中ab满足关系式:

______,______,的面积为______;

如图2,石于点C,点P是线段OC上一点,连接BP,延长BPAC于点时,求证:BP平分提示:三角形三个内角和等于

如图3,若,点E是点A与点B之间上一点连接CE,且CB平分有什么数量关系?请写出它们之间的数量关系并请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:课外兴趣小组活动时,老师提出了如下问题:

如图1ABC中,若AB=5AC=3,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长ADE,使得DE=AD,再连接BE(或将ACD绕点D逆时针旋转180°得到EBD),把ABAC2AD集中在ABE中,利用三角形的三边关系可得2AE8,则1AD4

感悟:解题时,条件中若出现中点”“中线字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.

1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC中,DBC边上的中点,DEDFDEAB于点EDFAC于点F,连接EF

①求证:BE+CFEF②若∠A=90°,探索线段BECFEF之间的等量关系,并加以证明;

2)问题拓展:如图3,在平行四边形ABCD中,AD=2ABFAD的中点,作CEAB,垂足E在线段AB上,联结EFCF,那么下列结论①∠DCF=BCDEF=CFSBEC=2SCEF④∠DFE=3AEF.中一定成立是 (填序号).

图1 图2 图3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个圆柱的底面半径是10 cm,高是18 cm,把这个圆柱放在水平桌面上,如图所示.

(1)如果用一个平面沿水平方向去截这个圆柱,所得的截面是什么形状?

(2)如果用一个平面沿竖直方向去截这个圆柱,所得的截面是什么形状?

(3)怎样截时所得的截面是长方形且长方形的面积最大,请你画出这个截面并求其面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.

探究1:如图l,在ABC中,O是∠ABC与∠ACB的平分线BOCO的交点,通过分析发现∠BOC=90+A,理由如下:

BOCO分别是∠ABC和∠ACB的角平分线

∴∠1=ABC, 2=ACB

∴∠l+2=(ABC+ACB)= (180-A)= 90-A

∴∠BOC=180-(1+2) =180-(90-A)=90+A

(1)探究2;如图2中,OABC与外角ACD的平分线BOCO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.

(2)探究3:如图3中, O是外角∠DBC与外角∠ECB的平分线BOCO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)

(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BOCO的交点,则∠BOC与∠A+D有怎样的关系?(直接写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿射线AC的方向匀速平移得到△PNM,速度为1cm/s,同时,点Q从点C出发,沿射线CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动,如图2所示,设运动时间为t(s)(0<t<4).

(1)当t为何值时,PQ∥MN?
(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使得PQ=QM,若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知多项式ax5+bx3+3x+c,当x=0时,该代数式的值为﹣1.

(1)求c的值;

(2)已知当x=3时,该式子的值为9,试求当x=﹣3时该式子的值;

(3)在第(2)小题的已知条件下,若有3a=5b成立,试比较a+bc的大小?

查看答案和解析>>

同步练习册答案