精英家教网 > 初中数学 > 题目详情

【题目】已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?

【答案】7200元

【解析】试题分析:仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCDRt△ABDRt△DBC构成,则容易求解.

试题解析:连接BD,


RtABD中,BD2=AB2+AD2=32+42=52
在△CBD中,CD2=132BC2=122
122+52=132
BC2+BD2=CD2
∴∠DBC=90°
S四边形ABCD=SBAD+SDBC=ADAB+DBBC
=×4×3+×12×5=36
所以需费用36×200=7200(元).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,C为线段AB延长线上一点,D为线段BC上一点,CD2BDE为线段AC上一点,CE2AE

(1)AB18BC21,求DE的长;

(2)ABa,求DE的长;(用含a的代数式表示)

(3)若图中所有线段的长度之和是线段AD长度的7倍,则的值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)-24×

(2)-9+5×(-6)-(-4)2÷(-8);

(3)0.25×(-2)2-[4÷+1]+(-1)2018

(4)-42÷-[].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图17Z10是由边长为1的小正方形组成的网格

(1)求四边形ABCD的面积;

(2)你能判断ADCD的位置关系吗?说出你的理由

17Z10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°B=45°BC=10 cm,过点AADBC且点D在点A的右侧.点P从点A出发沿射线AD方向以每秒1cm的速度运动,同时点Q从点C出发沿射线CB方向以每秒2cm的速度运动,在线段QC上取点E,使得QE =2cm,连结PE,设点P的运动时间为t秒.

1)若PEBC,则①PE= cmCE= 用含t的式子表示)

②求BQ的长;

2)请问是否存在t的值,使以ABEP为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠A+∠D=180°,∠1=3∠2,∠2=24°,点P是BC上的一点.

(1)请写出图中∠1的一对同位角,一对内错角,一对同旁内角;

(2)求∠EFC与∠E的度数;

(3)若∠BFP=46°,请判断CE与PF是否平行?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇同学要证明命题两组对边分别相等的四边形是平行四边形是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.

已知:如图1,在四边形ABCD中,BC=AD,AB=

求证:四边形ABCD 四边形.

(1)在方框中填空,以补全已知和求证;

(2)按嘉淇同学的思路写出证明过程;

(3)用文字叙述所证命题的逆命题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.
求证:

(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为了落实中央的强基惠民工程计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成若乙队单独施工则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15那么余下的工程由甲队单独完成还需5

1)这项工程的规定时间是多少天?

2)已知甲队每天的施工费用为6500乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?

查看答案和解析>>

同步练习册答案