精英家教网 > 初中数学 > 题目详情
如图,ABCD是边长为4cm的正方形,M是CD的中点,有一动点P从A点出发,以1cm/s的速度沿A→B→精英家教网C→D→A方向运动,设P点运动的时间为t(s),△APM的面积为S(cm2).
(1)当t=3时,求S;
(2)当t=7时,求S;
(3)当4<t≤8时,试确定t与S的函数关系式;
(4)当8<t≤16且t≠10时,试确定t与S的函数关系式.
分析:(1)首先根据题意作图,根据图形可求得△APM的高MN的长,又由S=
1
2
PA•MN,即可求得S的值;
(2)首先根据题意作图,由题意求得BP,CP,CM,DM的长,又由S=S正方形ABCD-S△ADM-S△ABP-S△PCM,即可求得S的值;
(3)当4<t≤8时,可知P在BC上,根据(2)的解题方法,首先求得BP,CP,CM,DM的长,又由S=S正方形ABCD-S△ADM-S△ABP-S△PCM,即可确定t与S的函数关系式;
(4)分别从8<t<10,10<t≤12与12<t≤16去分析,分别作出图形,根据图形求得△APM的面积S的值,即可求得t与S的函数关系式.
解答:精英家教网解:(1)当t=3时,如图:
过点M作MN⊥AB于N,
∵四边形ABCD是正方形,
∴四边形MNBC是矩形,
∴MN=AD=4,
根据题意得:PA=3,
∴S=
1
2
PA•MN=
1
2
×3×4=6;

(2)当t=7时,如图:
根据题意得:AB+BP=7,AB=BC=CD=4,
∴BP=3,CP=1,
∵M是CD的中点,精英家教网
∴DM=CM=
1
2
CD=2,
∴S=S正方形ABCD-S△ADM-S△ABP-S△PCM=4×4-
1
2
×4×3-
1
2
×1×2-
1
2
×2×4=5;

(3)当4<t≤8时,如图:
根据题意得:AB+BP=t,AB=BC=CD=4,
∴BP=t-4,CP=8-t,
∵M是CD的中点,
∴DM=CM=
1
2
CD=2,
∴S=S正方形ABCD-S△ADM-S△ABP-S△PCM=4×4-
1
2
×4×(t-4)-
1
2
×(8-t)×2-
1
2
×2×4=12-t;
∴当4<t≤8时,t与S的函数关系式为S=12-t;精英家教网

(4)当8<t<10时,如图1:
根据题意得:AB+BC+CP=t,AB=BC=CD=4,
∴CP=t-8,
∵M是CD的中点,
∴DM=CM=
1
2
CD=2,
∴PM=CM-CP=2-(t-8)=10-t,
∴S=
1
2
MP•AD=
1
2
×(10-t)×4=20-2t;
当10<t≤12时,如图2:
根据题意得:AB+BC+CP=t,AB=BC=CD=4,
∴CP=t-8,
∵M是CD的中点,
∴DM=CM=
1
2
CD=2
∴PM=CP-CM=(t-8)-2=t-10,
∴S=
1
2
MP•AD=
1
2
×(t-10)×4=2t-20;
当12<t≤16时,如图3:
根据题意得:AB+BC+CD+DP=t,AB=BC=CD=AD=4,精英家教网
∴DP=t-12,
∵M是CD的中点,
∴DM=CM=
1
2
CD=2,
∴S=S正方形ABCD-S△DPM-S梯形ABCM=4×4-
1
2
×2×(t-12)-
1
2
×(2+4)×4=16-t;
∴当8<t≤16且t≠10时,t与S的函数关系式为:S=
20-2t  (8<t<10)
2t-20  (10<t≤12)
16-t     (12<t≤16)
点评:此题考查了正方形的性质以及三角形的面积的求解方法,考查了动点问题.此题难度较大,解题的关键是注意数形结合思想与分类讨论思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图,ABCD是边长为6的正方形,请你建立一个适当的平面直角坐标系,并分别写出A、B、C、D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,ABCD是边长为2 a的正方形,AB为半圆O的直径,CE切⊙O于E,与BA的延长线交于F,求EF的长.
答:EF=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,ABCD是边长为9的正方形,E是BC上的一点,BE=
12
EC.将正方形折叠,使得点A与点E重合,折痕为MN,则S△ANE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,ABCD是边长为1的正方形,EFGH是内接于ABCD的正方形,AE=a,AF=b,若SEFGH=
2
3
,则|b-a|等于(  )
A、
2
2
B、
2
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,ABCD是边长为1的正方形,EFGH是内接于ABCD的正方形,AE=a,AF=b,若正方形EFGH的面积为
2
3
,则|a-b|等于(  )

查看答案和解析>>

同步练习册答案