精英家教网 > 初中数学 > 题目详情
有一块正方形的土地,现要在其上修筑两条笔直的道路,并将这片土地分成形状相同且面积相等的四部分,若道路的宽度不计,请在图1、图2和图3所示的三个正方形上分别画出示意图.
分析:①由正方形的性质知,连接对边的中点,能把正方形分成四个小的正方形,且每个的面积相等;
②由正方形的性质知,它的两个对角线把正方形分成面积相等的四部分,故作出正方形的对角线即可;
③由于正方形是中心对称图形,故过对称中心的两条互相垂直的直线能把正方形分成面积相等的四部分面积.
解答:解:道路的设计如图5-1、图5-2和图5-3所示;
点评:考查了作图-应用与设计作图,本题利用了正方形的性质,中点的性质,正方形是中心对称图形求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

23、阅读理解:如图(1),已知直线m∥n,A、B 为直线n上两点,C、D为直线m上两点,容易证明:△ABC的面积=△ABD的面积.
根据上述内容解决以下问题:已知正方形ABCD的边长为4,G是边CD上一点,以CG为边作正方形GCEF.
(1)如图(2),当点G与点D重合时,△BDF的面积为
8

(2)如图(3),当点G是CD的中点时,△BDF的面积为
8

(3)如图(4),当CG=a时,则△BDF的面积为
8
,并说明理由.
探索应用:小张家有一块正方形的土地如图(5),由于修建高速公路被占去一块三角形BCP区域.现决定在DP右侧补给小张一块土地,补偿后,土地变为四边形ABMD,要求补偿后的四边形ABMD的面积与原来形正方形ABCD的面积相等且M在射线BP上,请你在图中画出M点的位置,并简要叙述做法.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.


观察计算:
(1)如图1,当a=4,b=1时,四边形ABFD的面积为
16

(2)如图2,当a=4,b=2时,四边形ABFD的面积为
16

(3)如图3,当a=4,b=3时,四边形ABFD的面积为
16

探索发现:
(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;
综合应用:
(5)农民赵大伯有一块正方形的土地(如图5),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

一位父亲有4个儿子,他有一块正方形的土地,其中的四分之一留给了自己(如图),余下的分给他的4个儿子,他想使每个儿子获得的土地面积相等,形状相同,这位父亲应怎样完成这件事?

查看答案和解析>>

科目:初中数学 来源:2011-2012年浙江省衢州华外九年级第一学期第三次质量检测数学卷 题型:解答题

(本题10分)已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.

1.观察计算:(1)如图1,当a=4,b=1时,四边形ABFD的面积为          

(2)如图2,当a=4,b=2时,四边形ABFD的面积为          

(3)如图3,当a=4,b=3时,四边形ABFD的面积为          

2.探索发现:(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;

3.综合应用:(5)农民赵大伯有一块正方形的土地(如图),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.(要求尺规作图,保留作图痕迹)

 

查看答案和解析>>

同步练习册答案