【题目】黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A得仰角为45°,斜坡与地面成60°角,CD=4m,请你根据这些数据求电线杆的高(AB).
(结果精确到1m,参考数据: ≈1.4, ≈1.7)
【答案】解:延长AD交BC的延长线于G,作DH⊥BG于H,如图所示:
在Rt△DHC中,∠DCH=60°,CD=4,
则CH=CDcos∠DCH=4×cos60°=2,DH=CDsin∠DCH=4×sin60°=2 ,
∵DH⊥BG,∠G=30°,
∴HG= = =6,
∴CG=CH+HG=2+6=8,
设AB=xm,
∵AB⊥BG,∠G=30°,∠BCA=45°,
∴BC=x,BG= = = x,
∵BG﹣BC=CG,
∴ x﹣x=8,
解得:x≈11(m);
答:电线杆的高为11m.
【解析】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.延长AD交BC的延长线于G,作DH⊥BG于H,由三角函数求出求出CH、DH的长,得出CG,设AB=xm,根据正切的定义求出BG,得出方程,解方程即可.
科目:初中数学 来源: 题型:
【题目】如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为10cm,则该脸盆的半径为cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).
(1)以(0,0)为圆心,3为半径画圆;
(2)以(0,﹣1)为圆心,1为半径向下画半圆;
(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;
(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.
(向上、向下指在经过圆心的水平线的上方和下方)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.
(1)求证:AC平分∠DAB;
(2)连接BE交AC于点F,若cos∠CAD= ,求 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规定两数a,b之间的一种运算,记作(a,b):如果ac=b,那么(a,b)=c.例如:∵23=8,∴(2,8)=3.
(1)根据上述规定,填空:(3,27)=________,(5,1)=________,=________;
(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),小明给出了如下的理由:
设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n,
∴3x=4,即(3,4)=x,
∴(3n,4n)=(3,4).
请你尝试运用这种方法判断(3,4)+(3,5)=(3,20)是否成立,若成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠B=∠C,AB∥EF.试说明∠BGF=∠C.请完善解题过程,并在括号内填上相应的理论依据.
解:∵∠B=∠C,(已知)
∴AB∥ .( )
∵AB∥EF,(已知)
∴ ∥ .( )
∴∠BGF=∠C.( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n边 形的两边分别交于点M、N,∠α与正n边形重叠部分面积为S.
(1)当n=4,边长为2,∠α=90°时,如图(1),请直接写出S的值;
(2)当n=5,∠α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;
(3)当n=6,∠α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com